

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal) **Department of Electrical Engg.**

Semester/Year		III /II Program		gram	B.Tech
Subject I	Departmental	Subject	EE 301	Subject	Electro Mechanical Energy
Category	Course	Code:		Name:	Conversion. –I

		Contact Hours									
	Theory Practical					Total	Colliact Hours		Total		
ES	MS	Quiz	Assig	ES	LW	Quiz	Marks	L	Т	P	Credits
60	20	10	10	30	10	10	150	3	0	2	4

Prerequisites:

Basic Law of Electric and Magnetic Circuits and their Application

Course Objective:

- 1. To recall basic knowledge of transformer and DC machines.
- 2. To elaborate the knowledge of Electrical Machines used in the industries and domestic applications.
- 3. To explain the construction, working principle, operation of 1-phase transformer.
- 4. To explain the construction, working principle, operation, and speed control of D.C. machines and induction motor.

Course Outcomes:

At the end of this course, students will demonstrate the ability to

- CO1: Understand the constructional features and operating principles of transformers, both singlephase and three-phase and to determine the voltage regulation and performance characteristics of transformers.
- CO2: Evaluate the constructional details and performance characteristics of DC machines, including their operation as generators and motors.
- CO3: Review the constructional details of three-phase induction motors and understand their working principles, analyze the equivalent circuit, interpret the power flow diagram, phasor diagram and evaluate the characteristics.
- CO4: Analyze the starting methods of induction motors, importance of power factor control of Schrage motors. Apply open circuit and short circuit tests to determine the performance parameters and compare the performance characteristics of double cage and deep bar induction motors.
- CO5: Understand the concept of double revolving field theory; analyze the equivalent circuit of single-phase motors. Evaluate the characteristics and performance parameters; Assess the different starting methods of single-phase motors.

UNITs	Descriptions	Hrs.	CO's
I	Transformer: Constructional review of single phase transformer, Equivalent circuits, voltage regulation, short circuit and open circuit tests, Autotransformers, All day efficiency. 3-phase transformers, constructional features, winding arrangements, Scott connections, conditions of parallel operation.	10	CO1

II	D.C. Machines : Review of constructional features, Methods of excitation, Voltage and torque equations, Operation as generator, characteristics, Armature reaction, Commutation. Operation as a Motor, characteristics. Starter, speed control, Losses and Efficiency.	8	CO2					
III	Three phase Induction motor: Review of constructional details, equivalent circuit, Power flow diagram, Phasor diagram and characteristics	8	CO3					
IV	Performance of Induction motor. Starting Methods, Power factor Control (schrage motor), open circuit test and short circuit test, Speed control, Double cage & Deep bar Induction Motor.	7	CO4					
V	Single Phase Motors : Double revolving field theory, equivalent circuit, characteristics, performance and starting methods of single phase motor.	7	CO5					
Expert I	Expert Lecture							
Total H	Total Hours							

Suggestive list of experiments:

- 1) Verification of 3 phase transformer configurations viz \acute{Y}/\acute{Y} , Δ/Δ , \acute{Y}/Δ , Δ/\acute{Y} , open delta etc.(CO1)
- 2) To perform an open circuit and short test on 1 phase induction motor and to draw the equivalent circuit diagram. (C05)
- 3) To perform a load test on 3 phase induction motor and to draw its performance characteristics (C03).
- 4) To perform open circuit and short circuit test on 3 phase induction motors and to draw the circle diagram.(C04).
- 5) To perform no-load test on DC Machine (Swinburne's test) to find its efficiency at any load (C02).
- 6) Speed control of DC shunt motor by field weakening and armature rheostatic control method (C02).
- 7) No-load test on Schrage motor (3 phase inverted induction motor) and to draw graph between injected EMF Vs speed.(C04).
- 8) Study of DC motor starter (CO4).
- 9) Study of three phase induction motor starter (CO4).
- 10) Study of starting method of single phase induction motor (CO5).

Text Book-

- 1. Nagrath and Kothari, "Electrical Machines", Tata McGraw-Hill Education
- 2. Dr. P.S. Bimbhra, Electrical Machines, Khanna publishers.

Reference Books-

- 1. Electrical Machines- Ashfaq Hussain. Dhanpat Rai Publication.
- 2. Dr. P. S. Bimbhra, Generalized Theory of Electrical Machines khanna publishers
- 3. J. B. Gupta, Rajeev Manglik, Rohit Manglik, Theory and Performance of Electrical Machines S.K Kataria and sons
- 4. R. K. Rajput "Electrical Machine" Laxmi Publication
- 5. V.Del Toro, "Electrical Machines & Power Systems", 1985, Prentice-Hall, Inc., Englewood Cliffs.
- 6. V.Del Toro, "Electro mechanical Devices for Energy Conversion & Control Systems", PHI Pvt. Ltd.1975.

Modes of Evaluation and Rubric

Theory (60)	Attendance (10)	Midsem (10 + 10)	Performance (10)	Total (100)
Practical (30)	Attendance (10)	Viva/lab performance (10)		Total (50)

List/Links of e-learning resource	
• NPTEL	
Recommendation by Board of studies on	7 th June 2023
Approval by Academic council on	
Compiled and designed by	Prof. C S Sharma/Dr. Jitendra Kumar Tandekar
Subject handled by department	Electrical Engg.

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal)

Department of Electrical Engineering

Sem	III /II	Program			B.Tech								
1 -			Subject Code:	Е	EE 302 Subject Name:		Electronics-II						
Maximum 1	Maximum Marks Allotted												
	Theory	,		I	Practica	ıl	Total	Conta	act Ho	ours	Total Credits		
ES	MS	Quiz	Assig	ES	LW	Marks	L	Т	P				
60	20	10	10	30	10	10	150	3	0	2	4		

Prerequisites:

Basic Electronics, Network Analysis

Course Objective:

- 1. The objective of the subject is to provide students with the importance of Electronics as a subject.
- 2. To familiarize the importance of the operational amplifier, designing and developing circuits using operational amplifiers like summer, differentiator, integrator, instrumentation amplifier etc use and application of timer circuit.
- 3. Able to use OPM as a function generator, comparator A to D & D to A convertors, VCO, precision rectifiers
- 4. Familiarize students with logic families.
- 5. Provide knowledge for students with an understanding of active filter design.

Course Outcomes:

At the end of this course, students will demonstrate the ability to

CO1: Illustrate the transistor and other semi-controlled device as logic gates

CO2: Understand and analyze operation of Operational amplifier.

CO3: Acquire knowledge and analyze operational amplifier with its application.

CO4: Explore additional application of op-Amp such as VCO, precision rectifiers, sample and hold circuit, basic op-amp comparator circuit etc

CO5: Provide knowledge and designing of active filter.

UNITs	Descriptions	Hrs	CO's
I	Digital Logic Families: Digital integrated circuits, characteristic of digital IC'S, direct coupled transistor logic (DCTL), register transistor logic(RTL), Diode transistor logic (DTL), integrated injection logic(IIL), transistor transistor logic (TTL) ammeter couple the logic (ECL) unipolar logic family PMOS, NMOS and CMOS circuits.	7	CO1

II	Introduction, Differential Amplifier, Differential Amplifier Circuit Configuration, Dual-Input, Balanced – Output Differential amplifier, Dual –Input, Unbalanced – Output Differential Amplifier, Single – Input, Balanced – Output Differential amplifier, Single – Input, Unbalanced – Output Differential amplifier.	9	CO2					
III	Introduction, Block Diagram Representation of a Typical OP-Amp, Operational amplifier characteristics, slew rate, bandwidth, offset voltage, basic applications inverting, non inverting amplifier and its application summing amplifier, differentiator, integrator, differential amplifier, instrumentation amplifier, log and antilog amplifier, voltage to current and current to voltage converters, comparators Schmitt trigger.	9	CO3					
IV	Voltage Controlled Oscillator, precision rectifiers, sample and hold circuit, basic op-amp comparator circuit, zero crossing detector, function generator, peak detectors, analog and digital converters and digital to analog converters.	8	CO4					
V	Active filters, LPF, HPF, BPF, BEF, All pass filter, higher order filters & their design, switched capacitor filters, 555 timer and its applications, phase locked ICs (PLL).	7	CO5					
Expert I								
Total H	Total Hours							

Suggestive list of experiments:

- 1. To test the transistor as NOT gat, then apply it to form RTL and DTL logic family. (CO1)
- 2. To study operational amplifier as inverting & non inverting amplifier & calculate gain. (CO2)
- 3. To study and observe operational amplifier as a differentiator and integrator. (CO2)
- 4. To study and observe operational amplifiers as summing amplifier & difference amplifiers. (CO2)
- 5. To study operational amplifiers as comparator & Schmitt trigger. (CO3)
- 6. To design operational amplifier circuit for scaling and averaging. (CO3)
- 7. To study and design the active first order low pass filter and determine the frequency & gain. (CO3)
- 8. To Study and perform the conversion using the A/D and D/A converter. (CO4)
- 9. To study and design the active first order High pass filter and determine the frequency & gain. (CO5)
- 10. To study and design the active second order low pass filter and determine the frequency and gain.(CO5)

Text Book-

- 1. K.R.Botkar Integrated Circuits, Khanna Publishers.
- 2. Gaikward RA; OP- Amp and linear Integrated circuits; PHI

Reference Books-

- 1. Bogart; Electronic Devices and Circuits; Universal Book Stall, New Delhi
- 2. I.J. Nagrath; Electronics -Analog and Digital; PHI
- 3. Tobbey; OP- Amps their design and Application
- 4. Salivahanan; Linear Integrated Circuits; TMH
- 5. Linear Integrated Circuits :D. Raychowdhary and Shail Jain

Modes of Evaluation and Rubric										
Theory (60) Attendance (10) Midsem (10 + 10) Performance (10) Total (100)										
Practical (30)	Attendance (10)	Viva/lab per	rformance (10)		Total (50)					
List/Links of e-learning resource										
NPTEL Recommendatio	n by Board of studi	es on	7 th June 2023							
Approval by Aca	Approval by Academic council on									
Compiled and de	esigned by		Prof. Deepti Jain							
Subject handled	by department		Electrical Engg. Department							

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal) **Department of Electrical Engineering**

Semester/Year		II /II	Pro	ogram	B.Tech		
Subject Category	Departmental Course	Subject Code:	EE 303	Subject Name:	Network Analysis		

Maximum Marks Allotted									Conta	ot Uc	N11#G		
		Theory			Practical Total				Conta	act m	ours	Total Credits	
	ES	MS	Quiz	Assig	ES	LW	Quiz	Marks	L	Т	P		
	60	20	10	10	30	10	10	150	3	0	2	4	

Prerequisites:

Basic physics, calculus and fundamental of Electrical Engineering.

Course Objective:

- 1. To solve different complex circuits using various network reduction techniques such as Source Transformation, Network theorems etc.
- 2. To understand basic concepts of DC and AC circuit behaviour.
- 3. To analyze the transient response of series and parallel A.C. circuits and to solve problems in time domain using Laplace Transform.
- 4. To analyze two port circuit behaviours.

Course Outcomes:

At the end of this course, students will demonstrate the ability to:

- CO1. Acquire and demonstrate the knowledge of circuit elements, different laws and resonating behaviour of circuits.
- CO2. Apply the knowledge of basic circuit law to simplify the networks using network theorems.
- CO3. Analyze the RL, RC and RLC circuits using Laplace transform and waveform Synthesis.
- CO4. Analyze the transient, steady state of RL, RC and RLC circuits for AC and DC excitations.
- CO5: Analysis of various two port networks with their connection, interrelationships and interconnection of two port networks (with respect to impedance, admittance, hybrid and transmission parameters).

UNITs	Descriptions	Hrs.	CO's
I	Introduction to circuit elements Review of AC Circuits, Analysis of magnetically coupled circuits, Mutual and self Inductance, Dot convention, Energy in a Coupled Circuit. Resonant Circuits: Series and parallel resonance, frequency- response of series and Parallel circuits, Q-Factor, Bandwidth	8	CO1
II	Network Theorems for AC & DC circuits- Review of Thevenin's & Superposition Theorems, Norton's Theorem, , Reciprocity, Compensation, Substitution, Maximum power transfer, and Millman's theorem, Tellegen's theorem, problems with dependent & independent sources.	8	CO2

III	Laplace transforms and properties: initial conditions in networks and network solution with Laplace transformation, step, ramp and impulse functions, initial and final value theorem, waveform Synthesis	8	СОЗ
IV	Network topology, concept of Network graph, Tree, Tree branch & link, Incidence matrix, cut set and tie set matrices. Transient behaviour and initial conditions: Behaviour of circuit elements under switching condition and their Representation, evaluation of initial and final conditions in RL, RC and RLC circuits for AC and DC excitations.	8	CO4
V	Network function & Two port networks –Network & Transfer functions for one port & two ports, poles and zeros, Necessary condition for driving point & transfer function. Two port parameters – Z, Y, ABCD, Hybrid parameters, their inverse & image parameters, relationship between parameters, Interconnection of two ports networks, Terminated two port networks.	8	CO5
Expert Le			
Total Ho	40		

Suggestive list of experiments:

- 1. To verify the Thevenin's Theorem and determine the current flowing through the load resistance.(CO2)
- 2. To verify the superposition theorem and determine the current flowing through the load resistance. (CO2)
- 3. To verify the Maximum Power Transfer Theorem. (CO2)
- 4. To verify Reciprocity theorem and to determine the current flow through the load resistance. (CO2)
- 5. To verify Norton's theorem and to determine the current flow through the load resistance. (CO2)
- 6. To verify the Millman's Theorem. (CO2)
- 7. To verify the Tellegan's Theorem. (CO2)
- 8. To construct RL & RC transient circuits and to draw the transient curves. (CO4)
- 9. To obtain the resonance frequency of the given RLC series electrical network. (CO4)
- 10. To determine open circuit parameters and short circuit parameter of the given two-port network. (CO5)
- 11. To calculate and verify 'ABCD' parameters of two-port network. (CO5)

TEXT BOOKS:

- 1. M.E. Van Valkenburg, Network Analysis, Phi Learning, 3rd Edition, 2010
- 2. Abhijit Chakrabarti, Circuit theory: Dhanpat Rai & Co. 7th Edition, 2017

REFERENCE BOOKS:

- 1. William D Stanley: Network Analysis with Applications, Pearson Education, 4th Edition, 2013
- 2. G.K. Mitha; Network Analysis; Khanna Publisher, 14 Edition, 1988
- 3. Roy Choudhary D; Network and systems; New Age Pub,2nd Edition, 2013
- 4. Russell Mersereau and Joel Jackson, "Circuit Analysis: A Systems Approach; Pearson Pub.2005.

:

Theory (60)	Attendance (10)	Midsem (10 + 10)	Performance (10)	Total 100)
Practical (30)	Attendance (10)	Viva/lab performance (10)		Total (50)

List/Links of e-learning resource

• https://archive.nptel.ac.in/courses/108/105/108105159/

Recommendation by Board of studies on	7 th June 2023
Approval by Academic council on	
Compiled and designed by	Dr. Jeetendra Prasad
Subject handled by department	Electrical Engg.

:

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal) Department of Electrical Engineering

Seme	III /II	III /II Program			B.Tech								
Subject Category	Departme Course	ntal	Subject Code:	Е	E 304	Su	Subject Name:		Subject Name:		Electrical Instrumentation		
	Maximum Marks Allotted												
Theory				Practical Total						Total Credits			
ES	MS	Quiz	Assig	ES	LW	Quiz	Marks						
60	20	10	10	-	_	-	100	3	1	-	4		

Prerequisites:

Fundamentals of electrical engineering, Engineering Physics.

Course Objective:

Impart the knowledge of measurement systems, errors and its analysis.

- 1. Impart the knowledge of measurement systems, errors and its analysis.
- 2. To provide the knowledge of different types of instruments used in electrical engineering.
- 3. To provide knowledge of galvanometers, wattmeter, megger, flux meter, multimeter etc.
- 4. To acquire knowledge of measurement of energy and to understand instrument transformers.
- 5. To understand power factor meter, resistance measurement and magnetic measurement.

Course Outcomes:

At the end of this course, students will demonstrate the ability to

- CO1: Able to understand the concept of error in different instruments and its utility
- CO2: Able to understand the different AC and DC instruments with its features and working.
- CO3: Analyse the different power measuring instruments for AC and DC
- CO4: Able to understand the working, type, functioning of different energy meters.
- CO5: Able to understand and analyse the different bridges required for the measurement of R, L and C.

Units	Descriptions	Hrs.	CO's
I	Measurements, significance & method of measurement. Classification of instruments and their application. Static characteristics of instruments. Error & error analysis,. Loading effects, classification of analog instruments, operating principles, operating forces, Galvanometers - Theory & operation of ballistic D'arsonval Vibration galvanometer	9	CO1
II	Different types of Ammeter & Voltmeter - PMMC, MI, Electrodynamometer, Hotwire, Electrostatic, Induction, Rectifier, Electrothermic, Expression for control & deflection torque, their advantages, disadvantages & error. Extension of range of instruments using shunt & multiplier.	6	CO2

III	Instrument transformers - Potential and current transformers, ratio and phase angle errors, Difference between CT and PT. Measurement of power - Power in AC and DC Circuit, Electrodynamometer type of wattmeter, Construction, theory, operation & error. Double element and three element dynamometer wattmeter. Measurement of power in three phase circuit by one, two & three wattmeter method.	9	СОЗ		
IV	Measurement of Energy - Single phase induction type energy meter - construction and operating principle ,errors & compensations - Testing by phantom loading - Three phase energy meter - Maximum demand meter, digital energy meter, power factor meter - Single phase and three phase Electrodynamometer type & moving iron type, Net metering and Smart meter	8	CO4		
V	Resistance Measurement -Wheatstone Bridge, Kelvin's double bridge & loss of charge methods for resistance measurement, Earth resistance measurement. Sources and detectors, Use of Bridges for measurement of inductance, Capacitance & Q factor Maxwells bridge, Maxwell's inductance capacitance bridge, Hays bridge, Anderson's bridge, Owen's Bridge, Desauty's Bridge, Schering Bridge, Heaviside cambell's bridge, Weins bridge, Q meter and its applications and measurement methods.	8	CO5		
Expert					
Total I	Total Hours				

Suggestive list of experiments:

No Lab.

Text Book-

- 1. A.K.Sawhney, "A course in Electrical and Electronics Instrumentation". Dhanpat Rai & Co.
- 2. J.B,Gupta, "Electrical and Electronics Instrumentation". Dhanpat Rai & Co. S,K,Kataria Sons

Reference Books-

- 1. E W Golding & F C Widdis,,"Electrical Measurement & Measuring Instruments". Vedition, Wheeler Publishing
- 2. H.S.Kalsi,"Electronics Instrumentation ".TMH
- 3. R.K. Rajput, "Electrical and Electronics Instrumentation". S,Chand.

Modes of Evaluation and Rubric

Theory (60)	Attendance (10)	Midsem	(10 + 10)	Performance (10)	Total (100)			
List/Links of e-lear	List/Links of e-learning resource							
• NPTEL								
Recommendation l	by Board of studies on	l	7th June 2023					
Approval by Acade	emic council on							
Compiled and desi	gned by		Dr. Jitendra Singh Shakya					
Subject handled by	department		Electrical Engineering Department					

2

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal)

Department of Electrical Engineering

10

50

Semester/Year			III /II		Program			B.Tech			
Subject Category	Departme Course-l		Subject Code:	EF	E 305	Subjec Name		Workshop- II (Electrical Instrumentation Drawing Lab)			ation and
	Maximum Marks Allotted								act		
Theory				Practical To		Total	Hours			Total Credits	
ES	MS	Quiz	Assig	ES	LW	Quiz	Marks	L	T	P	

10

Prerequisites:

Fundamentals of Electrical Engineering, Engineering Physics.

Course Objective:

- 1. Impart the knowledge of measurement systems, errors and its analysis.
- 2. To provide the knowledge of different types of instruments used in electrical engg.

30

- 3. To provide knowledge of galvanometers, wattmeter, megger, flux meter, multimeter etc.
- 4. To acquire knowledge of measurement of energy and to understand instrument transformer.
- 5. To understand power factor meter, resistance measurement and magnetic measurement.

Course Outcomes:

At the end of this course, students will demonstrate the ability to

- CO1: Able to understand and perform the experiment to calculate the R, L and C using different bridges.
- CO2: Able to analyse the behaviour of different transducers.
- CO3:- Able to understand and draw the different symbol involve in electrical Engineering.
- CO4: Able to understand and draw the different layout and circuit diagram involve in electrical system.
- CO5: Understand the connection of different wiring system.

UNITs	Hrs	CO's
	30	

Suggestive list of experiments:

Electrical Instrumentation

- 1. Measurement of Inductance of coil using Anderson Bridge. (CO1)
- 2. Measurement of capacitance using Schering Bridge. (CO1)
- 3. To determine the frequency by Wien's bridge. (CO1)
- 4. To determine unknown inductance in terms of known capacitance and quality factor by Maxwell's bridge. (CO1)
- 5. Measurement of frequency and voltage of unknown signal using CRO. (CO2)
- 6. To determine unknown capacitance by using the De-Sauty bridge. (CO1)
- 7. Measurement of displacement by using LVDT. (CO2)
- 8. To performance characteristics strain gauge. (CO2)

Electrical Engineering Drawing

- 1. To draw electrical symbols used in circuit diagrams, such as resistors, capacitors, inductors, switches, and various types of electrical sources. (CO3)
- 2. To understand and draw grounding layouts for electrical systems (CO4)
- 3. To understand and draw wiring diagrams that illustrates the connections and layouts of electrical systems, such as lighting circuits, motor control circuits. (CO4)
- 4. To understand and draw the stair case wiring, corridor wiring(CO5)
- 5. To get the basic knowledge of electrical AUTO CAD and draw symbols using it (CO5)

Text Book-

- 1. A.K.Sawhney, "A course in Electrical and Electronics Instrumentation". Dhanpat Rai & Co
- 2. C.R. Dargan, "Electrical Engineing drawing", publisher paperback.

Reference Books-

- 1. E W Golding & F C Widdis, "Electrical Measurement & Measuring Instruments", Publishing Vedition, Wheeler
- 2. Ankit Agarwal and Madhvi Gupta, "Electrical Engnineering Design, Drawing & Estimation", publisher paperback

Modes of Evaluation and Rubric

Practical (30) Attendance (10) Viva/lab			p performance (10)	Total (50)			
List/Links of e-learning resource							
Virtual Lab							
Recommendation b	by Board of studies of	n	7 th June 2023				
Approval by Acade	emic council on						
Compiled and desi	gned by		Dr. Jitendra Singh Sl	nakya			
Subject handled by	department		Electrical Engineerin	ıg			

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal) Department of Electrical Engineering

Semes	ter/Year	III/II Progra		gram	B.Tech
Subject Category	MAC	Subject Code:	MAC 301	Subject Name:	Energy Ecology Environment & Society

Maximum Marks Allotted									act Ho	[
Theory			Practical			Total	Com	act no	ours	Total	
End Sem	Mid- Sem	Quiz	Assig	End Sem	LW	Quiz	Marks	L	Т	P	Credits
-	-	-	-	-	-	-	_	-	-	-	Grade

Prerequisites:

Basic of Chemistry, Basic of Physics

Course Objective:

The main objective is to get familiar with the air pollution, sound pollution, its effects, remedies To get knowledge of different sources available in the system To get knowledge of ecosystem life cycle

Course Outcomes:

- CO1: Able to understand the different sources available for energy generation.
- CO2: Able to understand the effects of ecosystem and its cycle.
- CO3: Able to understand and evaluate the adverse effect of air pollution in society.
- CO4: Able to understand and evaluate the adverse effect of water pollution in society
- CO5: Analyse the effect of pollution on the human health, society as well as moral duties required to get the environment free from these effects.

UNITs	Descriptions	Hrs	CO's
I	Energy- Sources of Energy : Renewable & Non Renewable, Fossil fuel, Biomass Geothermal, Hydrogen, Solar, Wind, hydal, nuclear sources.	6	CO1
II	Ecosystem – Segments of Environment: Atmosphere, hydrosphere, Lithosphere, biosphere. Cycles in Ecosystem – Water, Carbon, Nitrogen. Biodiversity: Threats and conservation	6	CO2
III	Air Pollution & Sound Pollution - Air Pollution: Air pollutants, classification, (Primary & secondary Pollutants) Adverse effects of pollutants. Causes of Air pollution chemical, photochemical, Green house effect, ozone layer depletion, acid Rain. Sound Pollution: Causes, controlling measures, measurement of sound pollution (deciblage), Industrial and non – industrial.	6	CO3

IV	Water Pollution- Water Pollution: Pollutants in water, adverse effects. Treatment of Domestic & Industrial water effluent. Soil Pollution – Soil Profile, Pollutants in soil, their adverse effects, controlling measures.	6	CO4	
V	Society, Ethics & Human values— Impact of waste on society. Solid waste management (Nuclear, Thermal, Plastic, medical, Agriculture, domestic and ewaste). Ethics and moral values, ethical situations, objectives of ethics and its study. Preliminary studies regarding Environmental Protection Acts, introduction to value education, self exploration, sanyam & swasthya.			
	Expert Lecture			
Total H	30			

Suggestive list of experiments:

Nill

Text Book-

- 1. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T. 2001, Environmental Encyclopedia, Jaico Publ. House, Mumabai

Reference Books-

- 1. Harris, CE, Prichard MS, Rabin's MJ, "Engineering Ethics"; Cengage Pub.
- 2. Svakumar; Energy Environment & Ethics in society; TMH
- 3. Bala Krishnamoorthy; "Environmental management"; PHI
- 4. Joseph, B. Environmental Studies, 2009 Tata Mcgraw Hill, Edu India Ltd. New Delhi.

Modes of Evaluation and Rubric

Grade

List/Links of e-learning resource

• NPTEL

Recommendation by Board of studies on	7th June 2023
Approval by Academic council on	
Compiled and designed by	Dr. Monika Jain
Subject handled by department	Electrical Engg. Department

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal) Department of Electrical Engineering

Seme	ster/Year		III /II			Program				B. Tech			
Subject Category	Holist Educat cours	ion	Subject Code:		EEHE-308 Subject		t Name:	Introduction to Yoga for Well-being					
	Maximum Marks Allotted								Contact Hours				
Theory				Practical Total			Total	10			Total Credits		
ES	MS	Quiz	Assig	E	ES	LW	Qı	uiz	Marks	L	Т	P	
-	-	-	-		-	-		-	-	-	-	-	Grade

Prerequisites:

Early to bed and early to rise

Course Objective:

Yoga education helps in self discipline and self-control, leading to immense amount of awareness, concentration and higher level of consciousness. Briefly the aims and objectives of Yoga education are:

- 1) To enable the student to have good physical health.
- 2) Practice of keeping hygiene.

Course Outcomes:

On the successful complication of this course student should be able to:

- CO1: Yoga improves strength, balance and flexibility, Yoga promotes better self-care.
- CO2: Yoga can ease arthritis symptoms, Yoga benefits heart health. Yoga helps you manage stress, Yoga helps with back pain relief.
- CO3: Yoga relaxes you, to help you sleep better, Yoga can mean more energy and brighter moods.
- CO4: Perform the physical exercise with slow and fast walk, cycling.
- CO5: Introduce the concept of health-Physical, mental, social and spiritual health

UNITs	Descriptions	Hrs.	CO's
I	Yogasanas Part 1: Meaning and classification of Yoga, benefits of yogasanas, Types of Yogasanas - Ardha Chakrsana, Tadasana, Trikonasana, Veerabhadrasana, Parshwa Konasana, Bhujangaasana, Padahastasana, Ustrasana.		CO1
II	Yogasanas part 2: Padmasana, Ananta Shayanasana, Pavana Muktasana, Purvauttanasan, Sarvangasana, Halasana, Gomukhasana, Shavasana, Makaraasana.		CO2
III	Pranayama : Bhastrika, Bhramari Pranayama, Anuloma pranayama, Kapalbhati Pranayama, Bhramari Pranayama, Ujjayi Pranayama, Sheetkari pranayama, Simhasana.		СОЗ

IV	Physical Excersise: Warm up, Running, slow and fast walk, Cycling, Skipping, Planks, Push-Ups, standing knee lift, stretching.		CO4		
V	Yoga & Wellness: Holistic health care- concept of health- Physical, mental, social and spiritual health Drug de-addiction-Disease prevention-Relaxation Techniques				
Total H	30				

Suggestive list of experiments:

Text Book-

- 1. Yogacharya Mitthanlal, Sampurna Yogasan, Sahni publication Delhi, 2009
- 2. Swami Satchidananda, The Yoga Sutras of Patanjali, Integral Yoga Publications, 2012

Reference Books-

- 1. B.K.S. Iyengar, Light on Yoga: The Classic Guide to Yoga by the World's Foremost Authority, **Thorsons** publication, 2006.
- 2. The Seven Spiritual Laws of Yoga By Deepak Chopra.
- 3. The Secret Power of Yoga: A Woman's Guide To The Heart and Spirit Of The Yoga Sutras by Nischala Joy Devi

Modes of Evaluation and Rubric

Grade

List/Links of e-learning resource

• Yogasanas:

Ministry of Ayurveda, Yoga & Naturopathy, Unani, Siddha, and Homoeopathy (AYUSH), Government of India - Yoga Portal: https://yoga.ayush.gov.in/yoga/

Art of Living Foundation - Online Yoga Classes: https://www.artofliving.org/yoga/yoga-online

• Pranavama:

Yoga International - Pranayama Resources: https://yogainternational.com/article/view/pranayama-resources

Yoga Journal - Pranayama Techniques: https://www.yogajournal.com/practice/poses/types/pranayama

Physical Exercise:

Fitness Blender - Free Workout Videos: https://www.fitnessblender.com/videos

Darebee - Exercise Library: https://darebee.com/exercises.html

• Yoga & Wellness:

International Association of Yoga Therapists (IAYT) - Resources: https://www.iayt.org/page/Resources Mayo Clinic - Yoga: A way to stay flexible and balanced: https://www.mayoclinic.org/healthy-lifestyle/stress-management/in-depth/yoga/art-20044733

Recommendation by Board of studies on	7 th June 2023
Approval by Academic council on	
Compiled and designed by	Prof. C S Sharma & Prof. Deepti Jain
Subject handled by department	Electrical Engineering