

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE VIDISHA (M.P.)

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV Bhopal)

Scheme of Examination (Semester-IV) Bachelor of Technology (B. Tech.) - Electrical Engg.

for Batch Admitted in session - 2022-23

					ioi Buttii i iui	initica in sc	331011 _0							
		Subject Name	Maximum Marks Allotted									C + + H		
Subject Code	Subject Category		Theory				Practical			Total	Contact Hrs.			Total Credits
			ES	MS	Assignment	Quiz	ES	LW	Quiz	Marks	L	T	P	Credits
MAB-401	BSC	Mathematics- Numerical Methods & Complex variable	60	20	10	10	-	-	-	100	3	1	0	4
EE-402	DC	Electro Mechanical Energy ConversionII	60	20	10	10	30	10	10	150	3	0	2	4
EE-403	DC	Digital Electronics	60	20	10	10	30	10	10	150	3	0	2	4
EE-404	DC	Power system –I (Generation + Transmission)	60	20	10	10	30	10	10	150	3	0	2	4
OE-405	OE	OE-II	60	20	10	10	-	-	-	100	3	0	0	3
EE-406	DL	MATLAB Programming	-	-	-	-	60	20	20	100	-	-	4	2
Total			300	100	50	50	150	50	50	750	15	1	5	21
	ILC	Extracurricular Activities	Based on participation in extra curriculum activities, one credit per year to be endorsed in eight semester ma							ter mar	k sheet.			
HUM -408	HEC*	Holistic Course - Emotional Intelligence	-	20	20	10	-	-	-	-	-	-	-	Grade
EEVA256	VAO	Artificial Intelligence	Respective faculty to develop his/ her own rubrics for evaluation.									Grade		
	1	MS: Minimum two mid	l semester	tests to be	conducted during	Semester (I	_ Lectur	e T. Tutor	ial P-nrac	tical)				

MS: Minimum two mid semester tests to be conducted during Semester, (L – Lecture, T- Tutorial, P-practical)

HEC* - Holistic education clsses will be conducted in off hours (weekends)

Open Elective (OE - 405): (1) Artificial Intelligence (2) Application of IoT in Electrical Engineering

Abbreviations: ES -End Semester, MS- Mid Semester, LW- Laboratory Work/Assignment. (L: Lecture, T: Tutorial, P:Practical), BSC- Basic Science Course, ESC- Engineering Science Course, HSMC- Humanities Science and Management Course, MAC- Mandatory, Audit Course, AC- Audit Course, HEC- Holistic Education Courses: NSS/NCC/NSO, ITC- Information Technology Course, ILC-Institute Level Course, DC- Department Course, DE-Department Elective, OC- Open Course, DLC- Department Laboratory, PROJ- Project Work, VA-Value Added Course.

Signature of BoS members:

Four Son Jens John Jens

BOS Date: 7th June 2023

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Department of Electrical Engineering

Semester	/Year	IV /II	Program			B.Tech							
Subject		Subject	EE-402	Subje	ect El	Electro Mechanical Energy Conversion. –							
Category	Category		EE-402	Nam	e:	II							
			Contact										
	Theory		Practical			Total	Hours		Total Credits				
ES	MS	Quiz	ES	LW	Quiz	Marks	L	T	P	Credits			
60	20	20	30	20		150	3	-	2	4			

Prerequisites:

Knowledge of AC & DC Machines and fundamentals of AC & DC Circuits.

Course Objective:

- 1. To explain basic principle and operation of a synchronous motor.
- 2. Analysis of electrical machines using generalized theory.
- 3. Constructional features, operating principle, characteristics and applications of special induction machine

Course Outcomes:

At the end of this course, students will demonstrate the ability to:

- CO1. Analyze the constructional features of polyphase synchronous machines and explain their operating principles, excitation systems. Derive the EMF equation, equivalent circuit model, and phasor diagram for cylindrical rotor and salient pole of synchronous machines and apply the two-reaction theory of salient pole synchronous machines.
- CO2. Understand the voltage regulation and V-curves and inverted V-curves, analyze synchronizing methods for synchronous alternator, starting methods synchronous motors.
- CO3. Understand the parameters of synchronous machines, analyze 3-phase short circuit oscillograms and perform slip tests and measure positive, negative, and zero sequence reactances.
- CO4. Understand the basics and principles for the development of a generalized approach, apply the concepts of speed, transformer voltage, electrical torque, Kron's Primitive machine model, Park's and inverse Park's transformations for analyzing electrical machines.

CO5. Analyze the constructional features and operating principles of induction generators, synchronous induction motors, LIM, and eddy current slip coupling.

Units	Descriptions	Hrs.	CO's
I	Polyphase Synchronous Machines: Constructional features. Excitation systems, emf equation, equivalent circuit model and phasor diagram for cylindrical rotor machine, Salient pole machines: Two reaction theory, Power angle equations and characteristics.	8	CO1
II	Methods of voltage regulation, Synchronizing methods, Starting methods of synchronous motor, V-curves, inverted v-curve, synchronous condenser, damper winding and hunting effects.	8	CO2
III	Parameters of synchronous machines, Analysis of 3-φ, short circuit oscillogram, slip test, measuring method of positive, negative and zero sequence reactances.	8	CO3

Signature of BoS members:

four John John Jens Jens Jens Jens