SHON TECHNOLOGIC	1 Ma	SAMRAT ASHOK TECHNOLOGICAL INSTITUTE									
ETD	(Engineering College), VIDISHA M.P.										
Stones .	(An Autonomous Institute Affiliated to RGPV Bhopal)										
VIDISHA M.P.	Applied Science (Physics)										
Semester/	Year	ear I/II Program R Tech									
Subject		Subject		DVP101	gram	Subject		\nnlind	Dhyoid	~	
Category	53	Code:		PIDIUI		Name:		Applied	FIIYSIC	5	1
		<u>M</u>	axim	um Marks Allo	tted	otical		Conta	ct Hou	s	Total
		Theory			Pra End	Ictical	Total				Credits
End Sem	Mid-S	Sem Q	uiz	Assignment	Sem	Work	Marks	L	Т	Ρ	Croand
60	20) 1	0	10	30	20	150	3	0	1	4
<u> </u>	_										
Prerequisi	tes:	: (Th		l. l le \							
Intermedia	ate Phys	ics (Theo	ry an	id Lab)							
Course Or		designed	to i	moort fundam	ontol len	owladge al	hout come	rang of	nhusio	0.11	which are
to the	ourse is	designed f emergi	na t	achnologies	It is pla	owledge a	bout some a	areas or	physic	5 M f (Juantum
mecha	nics I a	sers Fi	ng i her (Optics Holog	h is pla hohy S	unercondu	ctor Nano	materia	le Di	i (ctric and
niezo	electric	materia	le l	L aboratory	apiny, 5	are also	designed	which a	are ble	nd	ed with
experi	ments of	n the fund	lame	ental and adva	nced area	are also	rs	which a		/IIU	icu witti
Course Or	utcomes	:	um		lieeu uree	to or physic					
After com	pletion c	of the cou	rse, :	students will b	e able						
CO1	To understand basic quantum physics and apply it to the behaviour of a system at										
	the micr	oscopic l	evel	and solve the	e problem	ıs.					
CO2	To und	derstand	proc	cess of lase	ers and	explain	the require	ements,	prop	erti	es,
	classific	ation of t	vario	ous lasers. In	iey will a	also develo	op an unde	erstandi	ng of (opt	
	dispersi	anu anu on in or	noic	I fibers and		pillin the c	struction a	und ren	rocucti	nn	of
	hologra	ms.	Juca		proceed			inu rep	ocucii		01
CO3	To und	erstand	the	basic concep	ots and	theory of	semicondu	ictor f	or de	evi	ces
	applicat	ion.		•							
CO4	To unde	erstand	and	know the prin	nciple of	supercon	ductors and	d nanor	naterils	5. 7	Гhe
	sduned	nt will be	e ab	le to explain	types of the opplied	of superco	nductors, t	heir pro	opertie	5 8	and
CO5	applicat	ions, nan	0 tec	chnology and I	ts applica	ations.	zooloctric	matarial	c in to	m	> of
005	I o understand the characteristic of Dielectrics and Piezoelectric materials in terms of their applications										
CO6	CO6 To perform experiments related to the course contents.										
UNITS	Descriptions Hrs. CO's										
	Quant	Quantum mechanics: Planck's quantum hypothesis, Wave-particle									
	duality	/ of radia	tion,	de-Broglie m	natter wa	aves, Davis	sson and C	Germer's	6		
	electro	on diffrac	tion	experiment,	Compto	on effect,	Phase an	d group	8		
-	Veloci	ty, Heise	enbe	rg uncertainty	/ principl	e and its a	applications	s, wave)		
	Schrö	Tunction and its significance, Eigen value and Eigen function,									
	Laser	Lasers: Properties of lasers the basic process of lasers Population-									
	invers	inversion, classification of lasers, working of He-Ne, Ruby Nd YAG and									
	CO ₂ I	CO2 lasers, Applications of Lasers in Communication, Medical and									
	Indust	ry.									
	Optica	al fibers:	Ligh	nt guidance thi	ough op	tical fibres,	the qualita	tive idea	a 8		
	of criti	cal and a	ccep	otance angle,	types of	tibers, nur	nerical ape	rture, V	-		
		er, merm ranby:	uual Bas		of bol	ography	Construction	on and	4		
	recons	struction of	ססט f Im	age on hologr	am and :	application	s of holoars	ant and aphy	1		
	Basic	c of sen	nicon	nductors: De	ensity of	enerav st	tates. Ener	gy-band	1 ~	+	
	format	tions, dire	ect a	nd indirect ba	ind gap,	Effective n	nass, Ferm	i energy	/ 8		

	levels. Mobility and carrier concentrations (intrinsic). Radiative and non- radiative recombination mechanisms in semiconductors . Semiconductor Devices : Properties of PN junction and I-V diode equation, Photovoltaic cell, LED Materials for fabrication, LED Structures and Characteristics; Injection Laser Diode (ILD) - Laser action in semiconductors, structures and efficiency.						
IV	Superconductors:Free electrons theory of metals, Temperature dependence of resistivity in superconducting Metals, Effect of magnetic field (Meissner effect), Temperature dependence of critical field, Type I and Type II superconductors, BCS theory (Qualitative), High- temperature superconductors and Applications of superconductors. Nanomaterials:8Nanomaterials:Basic principle of nanoscience and technology, structure, properties ad uses of Fullerene and Carbon nanotubes, Applications of nanotechnology.8						
V	Dielectrics Materials: Polar and Non-Polar Dielectrics, Dipole moment and Polarization, Dielectric constant& Polarization, Gauss law in Dielectric, the relation between electric field vector E, Pand D. Piezoelectric materials- Ferroelectric materials, Piezoelectric effect, direct and converse parameter definitions, Piezoceramics, Piezopolymers, Piezoelectric materials as sensor and transducers.						
Guest Lec	tures (if any)						
Total Hou	Irs	40					
Suggestive	e list of experiments:		•				
1. 10	determine the width of a single slit from the study of Fraunhoffer diffraction	on patt	ern using				
	determine the frequency of A C mains using an electrical vibrator						
2.10	etermination of Planck's constant						
4. To	determine the frequency of A.C. mains using a sonometer.						
5. To	study the nature of polarization of light using the half-wave plate.						
6. To	o find the numerical aperture of the given fibre.						
7. To	7. To determine the refractive indices μ_0 and μ_e of Quartz prism for ordinary and extraordinary						
ra	ys using the spectrometer.						
8. To	determine the wavelength of monochromatic source of light by Fresnel's b	iprism.					
9. To	study the V-I characteristics of semiconductor diode						
10. To	study V-I Characteristics of LED						
11. To	study the V-I characteristics of tunnel diode		, .				
12. To	ethod.	Newto	on's rings				
13. To	o determine the absorption coefficient of a glass plate by "LUMMER otometer	- BRC	DHUM"				
14 Te	determine the resolving nower of a telescope						
15. To	determine the wavelength of light emitted by mercury vapour lamp usin	ga d	iffraction				
gr.	ating.						
Text Boo	K-						
• Co	oncepts of Modern Physics, Arthur Beiser, Tata McGraw-Hill,6 th edition,20 otics, A.Ghatak, McGraw Hill, 2012.	09.					
• Er	• Engineering Physics, Hitendra K Malik& A.K. Singh, Mc Graw Hill Education Private						
• El	Elements of Modern Physics S H Patil						
• Ki	ruthiga Siyaprastha, Modern Physics, S. Chand						
• A	Textbook of Engineering Physics, Gaur and Gupta. Dhanpat Rai Publisher	s, New	,				
De	elhi,8 th edition,.2011.	,					
El	ectrical Engineering Materials by A.J. Dekker, PHI publication						
Referenc	e Books-						
• La	sers and non-linear optics, B.B.Laud, New Age international,3rd edition,20)11					

- Solid State Physics, S.O.Pillai, New Age International Ltd, publishers •
- Electromagnetic Theory for Telecommunications, C.S.Liu and V.K.Tripathi, Foundation • Books, New Delhi,2007
- Quantum Mechanics by L.I. Schiff, Mc Graw Hill Co. .
- A Textbook of Quantum Mechanics by Piravonu Mathews, K. Venkatesan (Tata • McGraw Hill)
- Cady, W. G., Piezoelectricity, Dover Publication •
- Piezoelectric Materials & Devices: Application in Engineering And Medical Sciences By • M.S. Vijiya .CRC Press.
- Electrical Engineering Materials Physics Properties by SP A Seth, Dhanpat Rai Publications. •
- Modes of Evaluation and Rubric

Criteria	Excellent (3 points)	Good (2 points)	Fair(1 point)
Quiz	> 80%	60-80%	40-60%
Test & exam	>75%	60 -75%	< 60%
Assignment	Assignment is coherently organized and the logic / solution to all the problems provided. Writing is clear and concise and persuasive.	Assignment is generally well organized and logic / solution to maximum of the problems provided barring few inaccuracies.	Assignment is poorly organized and difficult to follow. Does not flow logically from one part to another with lots of mistakes

List/Links of e-learning resource

- https://nptel.ac.in/courses/122107035/#
- https://nptel.ac.in/course.html •
- http://www.tndte.gov.in/site/wp-content/uploads/2016/08/Engineering-physics.pdf •
- https://physicstoday.scitation.org •
- Barbastathis, G. and Sheppard C., Optics, • https://ocw.mit.edu/courses/mechanical-engineering/2-71-optics-spring-2009/

14.06.2022
Jetendra Parashar
Applied Science (Physics)

Acument . . .

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Department of Electronics Engineering

Syllabus applicable to July 2022 admitted and later batches

Name of	B. Tech in Electronics & Instrumentation Engineering										
Semester and Year of study					B. Tech 1 st Year 1 st Semester						
Subject C	Engineering Science Course (ESC)										
Subject Code: EIA101				Subject Name: Basic Electronics							
		Maximu	m Mark	s Allotte	ed			Can	ha at I la		
	Th	eory		F	Practical		Total	Con		burs	Total
End Sem	Mid- Sem	Assignment	Quiz	End Sem	Lab- Work	Quiz	Marks	L	т	Ρ	Credits
60	20	10	10	30	10	10	150	3	0	2	4
							•				
Prerequisi	ites:										
Fundame	Fundamentals of Physics										
Course Objective:											
1. The course intends to provide an overview of the principles, operation and application of the											
2. TI	his course	e relies on elen	nentary	treatmer	nt and qu	alitativ	e analysis a	nd ma	akes	use	of simple
m	odels an	d equation to	illustrat	e the c	oncepts	involve	ed.				
3. To	o provide	an overview of	amplifie	ers.							
4. S	ufficient k	nowledge is pr	ovided	so that s	students	will be	able to use f	his co	urse a	as the	e basis for
5 0	ner advar	ncea courses II	cond writ	og Circu	its and L	inear it	S, Power E	direct	nics et	C. tho n	ractico of
J. U	ectronice				municau		s specifically	uireci	eu io	uie p	
	ecuonics	engineenng.									
Course Outcomes:											
After completion of this course students will be able to											
CO1: Acq	CO1: Acquire knowledge of semiconductor devices and their working mechanism.										
CO2: Ana	alyze vario	ous electronic o	circuit co	nfigurati	ion.	oromot	o.ro				
	liyze the t sign variou		rcuits	na comp	ute its p	aramet	ers.				
									CO's		
									003		
	Semicor	nductor diodes:	Introdu	ction to F	PN juncti	on diod	e, Zener dioc	le and			
	Tunnol	diada Schottl	iers, Re	gulators	, Clippin tor diad	ig and	Clamping cl	rcuits,		,	CO1,
	Ontoele	ctronic devices	e PIN c	inde li	ioi uiou aht Emi	e anu ttina D	inde (LED)	l acor	CO4		
diode								Lasci			
		1			Dhurston	-					
	Bipolar	Junction I ran	sistors ((BJIS):	Physical	Struct	ure and ope	ration			
	commor	nemitter comn	an ang non base	and co	mmon co	i ampi ollector	amplifiers R	iasina			CO2
l II	the BIT: fixed bias, emitter feedback bias, collector feedback bias and 10							CO4			
	voltage divider bias, D.C. analysis of transistor circuits, load line and Q										
	point, Transistor as a switch: cut-off and saturation modes.										
	AC Anal	lysis of BJT:									
	Transist	ansistor Model: re Model, h-parameter model, Small Signal Analysis, 12 CO3							CO3		
	BJIFre	quency Respo	nse.								
	Wultista	ge Amplifiers:	WUITISTA	ge or C	ascade	amplifie	er: classificat	ion of			
IV	svsteme	aye amplitiel,	couping rading o	y anu n n voltag	e dain (y respo	nae ol casi nain nhase	innut	8	;	CO2
	and output impedances and bandwidth of cascaded or multistage										

amplifiers. Types of coupling, cascade and cascode circuits, Miller theorem, Darlington pair, bootstrap circuit.									
V Tuned Amplifiers: Single tuned, double tuned and stagger tuned amplifiers characteristics and their frequency response. Power amplifier: Class A large signal amplifiers, second-harmonic distortion, Transformer coupled audio power amplifier, Class B amplifier, Class AB operation push pull and Class C power amplifiers. Comparison of their efficiencies, types of distortion.	7	CO2							
Guest Lectures (if any)		Nil							
Total Hours	45								
Suggestive list of experiments:									
 To draw the forward and reverse bias characteristics of a semiconductor PN j To draw the characteristics of Zener diode as a voltage regulator. (CO1) To observe the waveform of Clamper circuit. (CO1) To observe the waveform of Clipper circuit. (CO1) To observe the output waveform of Half wave rectifier. Calculate its paramet 	unction ers like	diode. PIV, Ripple							
 Factor, Form Factor and Efficiency. (CO1) 6. To observe the output waveform of Full wave rectifier. Calculate PIV, Ripple Factor (CO1) 	 For the output waveform of Final wave rectifier. Calculate RS parameters like Fiv, Ripple Factor, Form Factor and Efficiency. (CO1) To observe the output waveform of Full wave rectifier. Calculate PIV, Ripple Factor, Form Factor 								
 To plot common base input and output characteristics for PNP bipolar junction To plot common emitter input and output characteristics for NPN bipolar junction To design a positive clipper circuit using a 1 kHz square wave with a 10 magnitude as the input signal. (CO4) 	 and Enciency. (CO1) To plot common base input and output characteristics for PNP bipolar junction transistor. (CO2) To plot common emitter input and output characteristics for NPN bipolar junction transistor. (CO2) To design a positive clipper circuit using a 1 kHz square wave with a 10 volt peak-to-peak magnitude as the input signal. (CO4) 								
 To design a negative clamper circuit using a 1 kHz square wave with a 10 volt peak-to-peak magnitude as the input signal. (CO4) To draw the frequency response of two stage RC coupled class A amplifier using transistor. (CO2) To draw the frequency response of two stage Direct coupled class A amplifier using transistor. 									
(CU2)									
 Integrated Electronics - Millman Halkias, TMH Electronic Devices & Circuits – Boyelstad & Nashelsky – PHI Electronic Devices & Circuits – David A. Bell – PHI Principles of Electronic Devices – Malvino TMH 									
Reference Books-									
 Microelectronic Circuits- Sedra, Smith. Electronics Circuits And Systems- Owen Bishop Intuitive Analog Circuit Design- Marc T. Thompson Starting Electronics (Fourth Edition)-Keith Brindley 									
List and Links of e-learning resources: 1. https://nptel.ac.in/courses/117103063/ 2. https://www.electronics-tutorials.ws/									
Modes of Evaluation and Rubric									
The evaluation modes consist of performance in Two mid-semester Tests, Quiz/ Ass end-semester examinations, and end-semester practical examinations.	ignment	s, lab work,							
Recommendation by Board of studies on 14.06.2022									
Approval by Academic council on									
Compiled and designed by									

& And & Me Bander proses of & E: 24

A SHOR TECHNOLO	SAMRAT ASHOK TECHNOLOGICAL INSTITUTE										
I GA		(Engineering College), VIDISHA M.P.									
A LEVE	(An Autonomous Institute Affiliated to RGPV Bhopal)										
VIDISHA I	Mechanical Engineering										
Semeste	/Year	1/11		Prog	ram	<u></u>	9	. э вт	ech		
Subject		Subie	ct .		Subie	ct	_				
Category	BSC	Code		/IEA102	Nam	e:	Eng	ineering	g Gra	aphi	CS
		Ma	aximum I	/larks Allotte	d			Conto	ot Llo		
	Theo	ory		P	ractical		Total	Conta		uis	Total
End	Mid-	Quiz	Assign	End	Lab-	Quiz	Marks	L	т	Р	Credits
Sem	Sem		ment	Sem	Work			_			
60	20	10	10	30	10	10	150	03	0	02	04
Prerequi	sites:										
Basic ge	ometrical	construc	lion.								
The chie		nginoorin	a Croph	ice to Enher	no imari	nation	and thinking		to or	oto I	Docian of
	cuve OIE	Id of one	iy Graph	with booir		nau0n sof⊏		j power Granhia		ale I d Do	sign the
studente	will solve	and crea	nieering te mode	, willi Dasil Is so solve i	ndustrial	and re	al-life proble	Giapriic ms	s dill	u De	sign, the
	Outcome	s:		13 30 30170 1	nuusinai			/113.			
1 Stude	nts should	d able to	understa	and the vari	ous types	of End	nineering Sc	ales R	F C	onst	ruction of
Fllipse a	nd Parabo	ola etc	underste		bus types		gineering of	50105, 11	г., О	01151	
2. Learn	the funda	mentals of	of points	and Straigh	t line and	their li	mportance i	n Enaine	erino	n Pro	fession.
3. Under	stand the	Proiectio	n of Plar	ne and Solid	s and the	ir Appl	ication	<u> </u>			
4 Unders	4 Understand the Principal of Development of Surface and Section of Solids										
5. Learn about the Isometric Projection and and basic fundamental of CAD/CAM											
UNITs		Descriptions Hrs. CO'					CO's				
	Basic ir	ntroductio	n about	Drawing, a	and vario	us inst	ruments re	quired fo	or		
	drawing				- ·						
	Scales	Repres	entative	factor, Plai	n Scales,	Diago	nal Scales,	Scale of	of		
1	Conic	noras								1	
	Conic Section: Construction of Ellipse, Parabola, hyperbola by different										
	Spacial Curves: Cycloid Epicycloid Hyperycloid Inyclutes										
	Archimedean, and Logarithmic Spirals										
	Projecti	on of po	ints and	Straight li	nes:						
	Projecti	on of Poi	nts, cono	epts of orth	logonal pi	ojectio	n system.				
1	Projecti	on of Li	nes, Pro	jection of p	parallel L	ine, pe	rpendicular	line an	d	8	2
	oblique Line, line placed in two quadrants, line contained by Profile Plane,										
	Rotatin	I races or lines, methods of determining I.L. and I.I. of oblique line,									
	Projecti	on of p	lanes:	Projection of	of perper	dicular	and obliq	ue plan	э.		
	Traces of	of plane.		-							
	Projecti	on of So	olids: Cl	assification	of Solids,	Positio	on of solids	with		8	3
	respect	pect to K.P. projection of platonic solids, polyhedrons, Solids of							Ū		
	revolutio	on, proje	ction of	solids on	Auxiliary	plane	e, Projectio	n of			
	Combina	ation of S	olids.	and Dubuni							
	Develop	oment of	Surfac	es: Princip	le of dev	elopme	ent of surfa	ices,			
N.7	method		opment l	arallel line	and radia	ai line i	method for	right			A
IV	SOIIC, SO	nias with	cutouts,		or cylind	ers.	planas			Ø	4
	Section	UT S		JIASSIIICALIO			pianes,	0.1.0			
	represer	ntation, S	ection o	right solids	s by norm	al and	inclined pla	ines,			

	Section of platonic solids. True and apparent shape of section							
	Section of platonic solids, the and apparent shape of section.							
v	Isometricprojections:Isometricscales, isometricaxis, IsometricProjection from orthographic drawing.Computer Aided Drafting (CAD):Introduction, benefits, software's basiccommand of drafting entities like line, circle, polygon, polyhedron,cylinders, transformations and editing commands like move, rotate, mirrorarray, solution of projection problems on CAD.							
Guest Le	ectures (if any)							
Total Ho	urs	40						
Suggest	ve list of experiments:							
1. Scale								
2. Conic	Section							
3. Engin	eering Curves							
4.Project	ion of Points							
5. Projec	tion of Lines							
6. Projec	tion of Planes.							
7. Projec	tion of Solids							
8. Sectio	n of Solids							
9. Devel	opment of Surfaces							
10. Isom	etric Projection.							
Text Boo 1. Eng	k- ineering Drawing by CM Agrawal and Basant Agrawal TMH Publications. extbook of Engineering Drawing by R.K. Dhawan							
Reference	e Books-							
1. 1	N.D. Bhatt and V.M. Panchal, Engineering Drawing Plane and Solid Geometry, Ch	narotar						
1	Publishing House. Engineering Drawing and Graphics by K. Venugopal							
2. 3. ⁻ 4.	Engineering Graphics by B. Bhattacharyya Fechnical Drawing with Engineering Graphics by Frederick E Giesecke and Ivan L Engineering Graphics by T. Jeyapoovan, S. Gowri	. Hill						
Modes o	f Evaluation and Rubric							
There w	Il be continuous evaluation for during the semester for 40 sessional marks a	and 60	semester					
End term	n Marks. The practical marks are 50, out of which 30 marks will be awarded for	or viva	voce and					
20 marks	s for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid semes	ster, 20	marks to					
be awar	ded for day to day performance and Quiz/Assignments. For the 60 Marks,	there	will be a					
semeste	r – End examination as per the norms of AICTE.							
Recomm	endation by Board of studies on							

Recommendation by Doard of Studies on	
Approval by Academic council on	
Compiled and designed by	
Subject handled by department	

A. cum Conj glan Kny & On

	SAMRAT ASHOK TECHNOLOGICAL INSTITUTE										
and show TECHNOLOGY	(Engineering College), VIDISHA M.P.										
			(An	Autonomo	ous Inst	itute Af	filiated to RG	PV Bh	opal)		
A REFE	and a start		Pro	oram: E	Electi	onic	s Instrun	nenta	atio	n	
VIDISHA M.	Dopartment of Electrical & Electronics Enga										
	Department of Electrical & Electronics Engg.										
Semeste	er/Year	II /I	_	Progra	am			B.Te	ech		
Subject Category	B.Tech	Subject Code:	E	EA104	Subje Namo	ect e:	Electrical Machine & T			ransformer	
		Maxir	num N	larks Allotte	d			0.00	4		Tatal
	Theory	/		Practi	ical		Total	Con	tact H	ours	Credits
End Sem	Mid-Sem	Quiz	Ass	End Sem	LW	Quiz	Marks	L	T	P	0100110
60	20	10	10	30	10	10	150	3	0	0	3
Prerequisite	es.										
Basics of P	hysics, Matl	hematics									
Basics of e	lectrical circ	uits									
Course Obj	ective:			at of Dourse		inerrite					
1. Fa 2 Im	miliarize wi	in the basic wiedge of	: conce Transf	pi ol Powel ormer		ircuits.					
3. Im	part the kno	owledge of	AC and	d DC Motors	s, Gener	ators an	d Alternators.				
Course Out	Course Outcomes:										
Course Outcomes - On the successful completion of this course student should be able to:											
CO1: Acqu	CO1: Acquire knowledge and able to demonstrate AC circuits, transformers, electric machine. (BL1, BL2)										
CO3: Evalu	ate differer	nt performa	nce pa	rameters of	transfor	mer and	l electrical mad	chine (E	BL3, BL	(DL0, L _5)	JL-7)
CO4: Able	CO4: Able to design simple AC circuits and provide solution to simple problems related to transformer and										
AC/DC machine. (BL 3, BL 6).											
UNITs	ITs Descriptions Hrs CO's										
	AC Circuits- Representation of sinusoidal waveforms, peak and RMS values.										
	phasor rep	resentation	, real	power, reac	tive pow	ver, app	arent power, p	ower fa	actor.		CO1 C
I	Analysis c	of single-pl	nase :	ac circuits	consist	ing of	R, L, C, RL	, RC,	RLC	8	001,0
	combinatio	ns (series). delta conn	Inree	phase bala	anced cir	cuits, vo	bitage and curr	ent rela	tions		
	Transform	ers- Revie	w of la	ws of electr	omagne	tism. Ml	MF. flux. and t	heir rela	ation.		
	Single-pha	se transfor	mer b	asic concep	ots and	construc	ction features,	transfo	rmer	Q	CO2,
	induced er	nf equatior	n, loss	es in trans	formers,	three p	phase transfor	mer ar	id its	0	CO4
	configuration	on.		Concrete	A Cara	truction	al dataila of D	0	hina		
	working pr	inciple of C	or and C ma	chines class	r)- Cons ssificatio	n of DC	al details of L machine EM	IF equa	nine, ation		CO2 C
	characteris	tic of sepa	rately	excited and	self exc	ited ger	nerators. Work	ing prir	iciple	8	03.CO
	of DC moto	or, Importar	ice of l	back EMF, S	Starting	of DC m	otor	01	•		4
	Construction	nes (Indu	ction	nd phase w	ound rot	auction	motor: Gener	ai prin	cipie, rent		
IV	1-phase in	iduction m	otor:	Difference	between	three	phase and s	ingle p	hase	8	CO3,C
	induction motor, types of single phase induction motor with construction and										
	working pri	nciple									
	Synchrone	ous Machi	ne (M	otor and a	Alternat	ors)- M	lotor: stationer	ry arma	ature,		
v	winding sr	eed and fr	n salle Squenr	əni anu noi CV.	n-saiieili	. type n		or ua	mper	8	CO2,
	Alternator:	various ty	bes of	alternator,	constru	ction wo	orking principle	, gene	rated	Ĩ	CO4
	EMF equat	ion.		,			- · ·	-			
Guest Lect	ures (if any)									10	
Total Hour	'S									40	

1. To determine active power, reactive power, of a single phase R-L series circuit. (C02) To determine the line current, phase current, line voltage, phase voltage, phase current and total power of 2. a three phase balanced star connected load. (CO2) To determine the transformation ratio and perform polarity test on a single phase transformer. (CO2) 3. To conduct open circuit test and short circuit test on single phase transformer and calculate iron losses and 4. copper loss (C02) To perform load test on single phase transformer and determine voltage regulation and efficiency. (C03) 5. 6. To determine the armature circuit resistance of series field winding resistance, shunt field winding resistance of DC machines. (C02) To perform a load test on 3 phase induction motor and to draw its performance characteristics (C02) 7. Speed control of DC shunt motor by field weakening and armature rheostatic control method (C02) 8. 9. No-load test on Schrage motor (3 phase inverted induction motor) and to draw graph between injected EMF Vs speed.(C02). 10. Speed control of DC motor (CO2, CO3). 11. Speed control of induction motor (CO2, CO3). 12. To determine the regulation of alternator by synchronous impedance method. (CO3). 13. To plot the V-curves of a synchronous motor at no load. (CO2). 14. To perform the parallel operation of alternator with the existing bus-bar. (CO2) Reference Books-1. Engineering Circuit Analysis by William H hayt and Kimberly Electrical machinery by Dr P S Bhimbra 2. Millman, Halkias & Parikh, Integrated Electronics, Mc Graw Hill, II Edition 3. Nagrath & Kothari, Basic Electrical Engineering, III Edition TMH. 4 Hughes, Electrical and Electronic Technology, Pearson Education IX Edition Modes of Evaluation and Rubric Theory Attendance (5) Midsem (10) Performance (5) Total (20) Attendance (5) Assignmet (5) Total (10) Quiz (10) Total (10) Practical Attendance (5) Lab Work (5) Total (10) Total (10) Quiz (10) List/Links of e-learning resource

- https://nptel.ac.in/courses/108/108/108108076/
- IISC banglore

Suggestive list of experiments:

- <u>https://nptel.ac.in/courses/108/105/108105132/</u>
- IIT kharagpur

Recommendation by Board of studies on	14/6/22
Approval by Academic council on	16/6/22
Compiled and designed by	Prof. C S Sharma/Dr. Jitendra Kumar Tandekar
Subject handled by department	Electrical and Electronics Engg.

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal) Department of Applied Science

Stellest First Sem Frogram B. 1ech. Subject Bubject Linear Algebra and Calculus Theory Maximum Marks Allotted Contact Hours Total End Sem Mid-Sem Quiz Assign End Lab. Total Marks L T P 60 20 10 10 - - 100 3 1 - 4 Prerequisites: Basic of Differentiations, Integrations and Matrices. Contact Hours Contact Hours Coluus, and linear algebra. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines. Course Outcomes: This course is to develop students abilities to: 1. Applications to Partial Differentiation that is Fundamental to Application of Analysis to Engineering Problems. 3. Finding area and Volume using Double and Triple Integrals. 4. The colucations to Markines and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory.									<u> </u>	-		
Category Baymet Linear Algebra and Calculus Category Maximum Marks Allottad Code: Contact Hours Total End Sem Mid-Sem Quiz Assign End Lab- Total Marks L T P 60 20 10 10 - - 100 3 1 - 4 Prerequisites: Basic of Differentiations, Integrations and Matrices. Course Objective: The objective of this course is to familiarize the prospective engineers with techniques in calculus, and linear algebra. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines. Course Objective: This course is to develop students abilities to: 1. Apply Differential Calculus to Notions of Curvature. Apart from some other Applications they will have a Basic Understanding of Taylor's Theorem, Maxima and Minima. 2. The Fallouts of Partial Differentiation that is Fundamental to Application of Analysis to Engineering Problems. 3. Finding area and Volume using Double and Triple Integrals. 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve System of Linear	Semester/Year		First Se	ect Program		m Subiact	B. I ech.					
Maximum Marks Allotted Practical Contact Hours Total End Sem Mid-Sem Quiz Assign End Lab- ment Total Marks L T P Credits 60 20 10 10 - - 100 3 1 - 4 Prerequisites: Basic of Differentiations, Integrations and Matrices. Total Marks Total variables Correct Hours Total variables Course Objective: The objective of this course is to familiarize the prospective engineers with techniques in calculus, and linear algebra. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines. Course Outcomes: Course Outcomes: This course is to develop students abilities to: 1. Apply Differential Calculus to Notions of Curvature. Apart from some other Applications they will have a Basic Understanding of Taylor's Theorem, Maxima and Minima. 3. Finding area and Volume using Double and Triple Integrals. 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algeb	Category	al Core	Code: MAB101 Subject		Name:	Linear A	Igebra and Calculus			lus		
Theory Practical ment Control Lab. Sec. Control Marks Control Marks Control Marks Credits End Sem Mid-Sem Quiz Assign ment End Sem Lab. Total Marks L T P 60 20 10 10 - - 100 3 1 - 4 Prerequisites: Basic of Differentiations, Integrations and Matrices. Course Objective: - 100 3 1 - 4 The objective of this course is to familiarize the prospective engineers with techniques in calculus, and linear algebra. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines. Course Outcomes: This course is to develop students abilities to: 1. Apply Differential Calculus to Notions of Curvature. Apart from some other Applications they will have a Basic Understanding of Taylor's Theorem, Maxima and Minima. S. Indignation of Analysis to Engineering Problems. 3. Finding area and Volume using Double and Triple Integrals. 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve Sy	Maximum Marks Allotted											
End SemMid-SemQuizAssign mentEnd SemTotal MarksLTPCredits6020101010031-4Prerequisites:Basic of Differentiations, Integrations and Matrices10031-4Basic of Differentiations, Integrations and Matrices10031-4Course Objective:The objective of this course is to familiarize the prospective engineers with techniques in calculus, and linear algebra. It aims to equip the students with standard concepts and tools at an intermediate to advanced level of mathematics and applications that they would find useful in their disciplines <td></td> <td>Theor</td> <td>у</td> <td></td> <td></td> <td>Pra</td> <td>ctical</td> <td></td> <td colspan="2">Contac</td> <td>Juis</td> <td>Total</td>		Theor	у			Pra	ctical		Contac		Juis	Total
60 20 10 10 - 100 3 1 - 4 Prerequisites: Basic of Differentiations, Integrations and Matrices. - 100 3 1 - 4 Prerequisites: Course Objective: - - 100 3 1 - 4 Prerequisites: Course Objective: - - 100 3 1 - 4 Prerequisites: Course Objective: - 100 10 - 100 10 - 4 And Inear algebra. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines. -	End Sem	Mid-Sem	Quiz	Assigr ment	En En	d m	Lab- Work	Total Marks	L	Т	Р	Credits
Prerequisites: Basic of Differentiations, Integrations and Matrices. Course Objective: The objective of this course is to familiarize the prospective engineers with techniques in calculus, and linear algebra. It aims to equip the students with standard concepts and tools at an intermediate to advanced level of mathematics and applications that they would find useful in their disciplines. Course Outcomes: This course is to develop students abilities to: 1. Apply Differential Calculus to Notions of Curvature. Apart from some other Applications they will have a Basic Understanding of Taylor's Theorem, Maxima and Minima. 2. The Fallouts of Partial Differentiation that is Fundamental to Application of Analysis to Engineering Problems. 3. Finding area and Volume using Double and Triple Integrals. 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory. UNITs Differentiation: Partial Differentiation: Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. I Partial Differentiation: Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. 8 1 III Integral Calculus : Def	60	20	10	10	-		-	100	3	1	-	4
Basic of Differentiations, Integrations and Matrices. Course Objective: The objective of this course is to familiarize the prospective engineers with techniques in calculus, and linear algebra. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines. Course Outcomes: This course is to develop students abilities to: 1. Apply Differential Calculus to Notions of Curvature. Apart from some other Applications they will have a Basic Understanding of Taylor's Theorem, Maxima and Minima. 2. The Fallouts of Partial Differentiation that is Fundamental to Application of Analysis to Engineering Problems. 3. Finding area and Volume using Double and Triple Integrals. 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory. UNITs Descriptions Hrs. CO's Maclaurins and Taylor's Theorem, Total differentiation, Errors and Approximations. I Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. I Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. I Integr	Prerequisites:											
The objective: The objective of this course is to familiarize the prospective engineers with techniques in calculus, and linear algebra. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines. Course Outcomes: This course is to develop students abilities to: 1. Apply Differential Calculus to Notions of Curvature. Apart from some other Applications they will have a Basic Understanding of Taylor's Theorem, Maxima and Minima. 2. The Fallouts of Partial Differentiation that is Fundamental to Application of Analysis to Engineering Problems. 3. Finding area and Volume using Double and Triple Integrals. 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory. UNITs Descriptions Hrs. CO's Maclaurins and Taylors theorem (one variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates. I Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. II Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. III Integral Calculus : Definit	Basic of Differentiations, Integrations and Matrices.											
The objective of this course is to familiarize the prospective engineers with techniques in calculus, and linear algebra. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines. Course Outcomes: This course is to develop students abilities to: 1. Apply Differential Calculus to Notions of Curvature. Apart from some other Applications they will have a Basic Understanding of Taylor's Theorem, Maxima and Minima. 2. The Fallouts of Partial Differentiation that is Fundamental to Application of Analysis to Engineering Problems. 3. Finding area and Volume using Double and Triple Integrals. 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory. UNITS Descriptions Hr. CO's Maclaurins and Taylors theorem (one variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates. Partial Differentiation: Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. III in Summation of Series, Multiple Integrals, Change of order of and Approximations. IV Matrix : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse. B 4	Course Ob	jective:		. for so ili a							. !	
and index algoba, it aims of equip the students with standard concepts and concepts and enhematics and applications that they would find useful in their disciplines. Course Outcomes: This course is to develop students abilities to: 1. Apply Differential Calculus to Notions of Curvature. Apart from some other Applications they will have a Basic Understanding of Taylor's Theorem, Maxima and Minima. 2. The Fallouts of Partial Differentiation that is Fundamental to Application of Analysis to Engineering Problems. 3. Finding area and Volume using Double and Triple Integrals. 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and Unier Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory. UNITs Descriptions Hrs. CO's 0 Maclaurins and Taylors theorem (ne variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates. I Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. III Integral Calculus: Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of a signation of Approximations. IIII Integral Calculus: Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of a sin Summation of Series, Multiple Integrals, C	and linear	IVE OF THIS CO algebra. It ai	ourse is to	in the s	irize the tudents	pro e	ospective b. standar	engineers with	techi tools	nque at ar	s IN Vinte	calculus,
applications that they would find useful in their disciplines. Course Outcomes: This course is to develop students abilities to: 1. Apply Differential Calculus to Notions of Curvature. Apart from some other Applications they will have a Basic Understanding of Taylor's Theorem, Maxima and Minima. 2. The Fallouts of Partial Differentiation that is Fundamental to Application of Analysis to Engineering Problems. 3. Finding area and Volume using Double and Triple Integrals. 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory. UNITS Descriptions Hrs. CO's Maclaurins and Taylors theorem (one variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates. III Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. IIII in summation of Series, Multiple Integrals, Change of order of a lintegration, Application of Double and Triple Integrals (Area & Volume). IV Matrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations, Rank of Matrix, Consistency of Linear System of Equations, Cayley Hamilton Theorem and its Application to find the Inverse.	to advance	d level that v	will serve t	hem we	ell towar	ds t	ackling m	ore advanced	evel o	f mat	hem	atics and
Course Outcomes: This course is to develop students abilities to: 1. Apply Differential Calculus to Notions of Curvature. Apart from some other Applications they will have a Basic Understanding of Taylor's Theorem, Maxima and Minima. 2. The Fallouts of Partial Differentiation that is Fundamental to Application of Analysis to Engineering Problems. 3. Finding area and Volume using Double and Triple Integrals. 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory. UNITS Descriptions I Hrs. CO's Maclaurins and Taylors theorem (one variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates. 8 1 II Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. 8 2 III Integral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of a soluteration, Application of Double and Triple Integrals (Area & Volume). 3 III Integration, Application of Double and Triple Integrals, Change of order of a soluteration, Application of Equations, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors	application	s that they w	ould find u	iseful in	their dis	scip	lines.					
This course is to develop students abilities to: 1. Apply Differential Calculus to Notions of Curvature. Apart from some other Applications they will have a Basic Understanding of Taylor's Theorem, Maxima and Minima. 2. The Fallouts of Partial Differentiation that is Fundamental to Application of Analysis to Engineering Problems. 3. Finding area and Volume using Double and Triple Integrals. 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory. UNITs Descriptions Hrs. CO's Maclaurins and Taylors theorem (one variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates. II Partial Differentiation: Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. III Integral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of a Integration, Application of Double and Triple Integrals (Area & Volume). IV Matrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse.	Course Ou	tcomes:										
1. Apply Differential Calculus to Notions of Curvature. Apart from some other Applications they will have a Basic Understanding of Taylor's Theorem, Maxima and Minima. 2. The Fallouts of Partial Differentiation that is Fundamental to Application of Analysis to Engineering Problems. 3. Finding area and Volume using Double and Triple Integrals. 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory. UNITs Descriptions Hrs. CO's Maclaurins and Taylors theorem (one variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates. II Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. III Integral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of Integration, Application of Double and Triple Integrals (Area & Volume). IV Matrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse.	This course	e is to develo	p students	s abilitie	s to:							
have a Basic Understanding of Taylor's Theorem, Maxima and Minima. 2. The Fallouts of Partial Differentiation that is Fundamental to Application of Analysis to Engineering Problems. 3. Finding area and Volume using Double and Triple Integrals. 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory. UNITS Descriptions Hrs. CO's Maclaurins and Taylors theorem (one variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates. Partial Differentiation: Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. Integral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of a Integration, Application of Double and Triple Integrals (Area & Volume). Natrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse.	1. Apply Di	fferential Ca	Iculus to I	Notions	of Curv	vatu	re. Apart	from some oth	ner Ap	plicat	ions	they will
2. The Fallouts of Partial Differentiation that is Fundamental to Application of Analysis to Engineering Problems. 3. Finding area and Volume using Double and Triple Integrals. 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory. UNITs Descriptions Hrs. CO's Maclaurins and Taylors theorem (one variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates. 8 II Partial Differentiation: Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. 8 III Integral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of Altera & Volume). 8 IV Matrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse.	have a B	asic Underst	anding of	Taylor's	Theore	m,	Maxima a	nd Minima.				
Problems. 3. Finding area and Volume using Double and Triple Integrals. 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory. UNITs Descriptions Hrs. CO's Differential Calculus: Lebnitz Theorem, Expansion of functions by Maclaurins and Taylors theorem (one variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates. 8 1 I Partial Differentiation: Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. 8 2 III Integral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of Integration, Application of Double and Triple Integrals (Area & Volume). 8 3 IV Matrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse. 8 4	2. The Fallo	outs of Partia	al Different	tiation th	nat is Fu	unda	amental to	Application of	f Analy	vsis to	o En	gineering
 3. Finding area and Volume using Double and Triple Integrals. 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory. UNITS Descriptions Hrs. CO's Differential Calculus: Lebnitz Theorem, Expansion of functions by Maclaurins and Taylors theorem (one variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates. Partial Differentiation: Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. Integral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of Integration, Application of Double and Triple Integrals (Area & Volume). Matrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse. 	Problems	S.										0
 4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will understand Matrices and their Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory. UNITS Descriptions Hrs. CO's Differential Calculus: Lebnitz Theorem, Expansion of functions by Maclaurins and Taylors theorem (one variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates. Partial Differentiation: Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. Integral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of a Integration, Application of Double and Triple Integrals (Area & Volume). Matrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse. 	3 Finding area and Volume using Double and Triple Integrals											
understand Matrices and their Application to Solve System of Linear Simultaneous Equations. 5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory. UNITs Descriptions Hrs. CO's Differential Calculus: Lebnitz Theorem, Expansion of functions by Maclaurins and Taylors theorem (one variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates. 8 1 II Partial Differentiation: Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. 8 2 III Integral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of Integration, Application of Double and Triple Integrals (Area & Volume). 8 3 IV Matrix : Definition, Types & Properties of Matrices, Elementary Hamilton Theorem and its Application to find the Inverse. 8 4	4. The Essential Tool of Matrices and Linear Algebra in a Comprehensive Manner. Student will											
In the problem Solving in Boolean Algebra and Graph Theory. UNITs Descriptions Hrs. CO's Differential Calculus: Lebnitz Theorem, Expansion of functions by Maclaurins and Taylors theorem (one variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates. 1 II Partial Differentiation: Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations. 8 2 III Integral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of Integration, Application of Double and Triple Integrals (Area & Volume). 8 3 IV Matrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse. 8 4	understand Matrices and their Application to Solve System of Linear Simultaneous Equations											
UNITsDescriptionsHrs.CO'sDifferential Calculus: Lebnitz Theorem, Expansion of functions by Maclaurins and Taylors theorem (one variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates.81IIPartial Differentiation: Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations.82IIIIntegral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of Integration, Application of Double and Triple Integrals (Area & Volume).83IVMatrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse.84	5. Students will Gain Experience with Problem Solving in Boolean Algebra and Graph Theory.											
Differential Calculus: Lebnitz Theorem, Expansion of functions by Maclaurins and Taylors theorem (one variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates.81IIPartial Differentiation: Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations.82IIIIntegral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of Integration, Application of Double and Triple Integrals (Area & Volume).83IVMatrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse.84	UNITs	UNITs Descriptions Hrs. CO's					CO's					
IMaclaurins and Taylors theorem (one variable), Maxima & Minima of two variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates.81IIPartial Differentiation: Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations.82IIIIntegral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of Integration, Application of Double and Triple Integrals (Area & Volume).83IVMatrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse.84		Differentia	l Calculu	s: Leb	nitz The	eore	em, Expa	nsion of funct	ions b	y		
Itwo variables, Curvature: Radius and Centre of Curvature for Cartesian Coordinates.81Partial Differentiation:Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations.82IIIIntegral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of Integration, Application of Double and Triple Integrals (Area & Volume).83IVMatrix : Definition, Types & Properties of Matrices, Elementary Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse.84		Maclaurins and Taylors theorem (one variable), Maxima & Minima of							of			
Coordinates.Coordinates.IIPartial Differentiation: Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations.82IIIIntegral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of Integration, Application of Double and Triple Integrals (Area & Volume).83IVMatrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse.84	I	two variables, Curvature: Radius and Centre of Curvature for Cartesian							n	8	1	
IIPartial Differentiation: Partial Derivatives of Higher Order, Homogeneous Functions, Euler's Theorem, Total differentiation, Errors82and Approximations.1112Integral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of Integration, Application of Double and Triple Integrals (Area & Volume).83IVMatrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse.84		Coordinate	Coordinates.									
IIHomogeneous Functions, Euler's Theorem, Total differentiation, Errors and Approximations.82Integral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of Integration, Application of Double and Triple Integrals (Area & Volume).83IVMatrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse.84		Partial D	oifferentiat	tion:	Partial	De	erivatives	of Higher	Orde	r,		
and Approximations.Integral Calculus : Definite Integral as a Limit of the Sum, ApplicationIIIIntegral Calculus : Definite Integral as a Limit of the Sum, Applicationin Summation of Series, Multiple Integrals, Change of order of Integration, Application of Double and Triple Integrals (Area & Volume).8Matrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse.8	П	Homogene	ous Funct	ions, E	uler's Th	neoi	rem, Tota	I differentiation	, Erroi	s	8	2
IIIIntegral Calculus : Definite Integral as a Limit of the Sum, Application in Summation of Series, Multiple Integrals, Change of order of Integration, Application of Double and Triple Integrals (Area & Volume).83IVMatrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse.84		and Approx	kimations.									
IIIin Summation of Series, Multiple Integrals, Change of order of Integration, Application of Double and Triple Integrals (Area & Volume).83IVMatrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse.84		Integral Ca	alculus :	Definite	Integra	las	a Limit o	f the Sum, App	olicatio	n		
Integration, Application of Double and Triple Integrals (Area & Volume). IN Matrix : Definition, Types & Properties of Matrices, Elementary Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse.	Ш	in Summa	tion of S	Series,	Multiple	e Ir	ntegrals,	Change of o	rder o	of	8	3
Matrix : Definition, Types & Properties of Matrices, Elementary IV Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley 8 Hamilton Theorem and its Application to find the Inverse.		Integration,	, Applicati	on of D	ouble ar	nd T	riple Integ	grals (Area & Vo	olume)			
IV Transformation, Rank of Matrix, Consistency of Linear System of Equations and their solutions, Eigen Values and Eigen Vectors, Cayley Hamilton Theorem and its Application to find the Inverse.	IV	Matrix :	Definition,	Types	& Pr	ope	rties of	Matrices, Elei	nentai	у.		4
IV Equations and their solutions, Eigen Values and Eigen Vectors, Cayley 8 4 Hamilton Theorem and its Application to find the Inverse.		Transforma	ation, Ran	nk of N	latrix, (Con	sistency	of Linear Sys	stem o	of		
Hamilton Theorem and its Application to find the Inverse.		Equations	and their s	solution	s, Eigen	Va	lues and	Eigen Vectors,	Cayle	y	8	
		Hamilton T	heorem ar	nd its Ap	plicatio	n to	find the Ir	nverse.				

	Boolean Algebra & Graph Theory: Algebra of logic, Principal of		
	Duality and basic theorem, Boolean expression and Boolean functions,		5
V	Definition of Graph, Types of Graphs, Sub Graphs, Walk, Path and	8	
	Circuits,.		
TOTAL HOURS			

Reference Books:

- 1. Engg. Mathematics: By B.S. Grewal
- 2. Boolean Algebra: R.S. Agrawal
- 3. Engg. Mathematics: by H.K. Dass
- 4. Engg. Mathematics : By B. V. Rammanna

Recommendation by Board of studies on	14-06-2022
Approval by Academic council on	16-06-2022
Compiled and designed by	Applied Maths Board of Studies, Chairman Dr. Shailesh Jaloree

Junklews

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal) **Department of Humanities and Management** II Year B. Tech All Branches Semester/Year Program Subject Subject Subject Universal Human Values MAC MAC101 Category Code: Name: Maximum Marks Allotted Contact Hours Theory Practical Total Total Assign End Lab-Credits End Sem Mid-Sem Quiz Quiz Marks Т Р L Sem Work ment 00 00 00 00 60 20 20 100 2 Grade Prerequisites: During the Induction Program, students would get an initial exposure to human values through Universal Human Values - I. This exposure is to be augmented by this compulsory full semester foundation course. Course Objective: At the end of the course, the students will be able to: 1. Develop a holistic perspective based on exploration about others and themselves. 2. Develop clarity, importance of harmony and humanity towards family, society and nature/existence. 3. Strengthen self-reflection. 4. Develop commitment and courage to act. Course Outcomes: 1. By the end of the course, students will become aware of themselves, and their surroundings (family, society, nature) 2. They would have better critical ability. 3. They would become more responsible in life; and keeping human relationships and human nature in mind will be able to handle problems with sustainable solutions. 4. They would also become sensitive to their commitment towards nature and existence. 5. They would be able to apply what they have learnt to their own selves in different day-to-day reallife scenarios, at least a beginning would be made in this direction. UNITs Descriptions Hrs. CO's Introduction - Need, Basic Guidelines, Content and Process for Value Education 1. Self-Exploration-what is it? - Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for selfexploration 2. Continuous Happiness and Prosperity- A look at basic Human L 8 1 Aspirations 3. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority 4. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario

	5. Method to fulfil the above human aspirations: understanding and living in harmony at various levels. Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living		
	with responsibility.		
11	 Understanding Harmony in the Human Being - Harmony in Myself! 1. Understanding human being as a co-existence of the sentient 'I' and the material 'Body' 2. Understanding the needs of Self ('I') and 'Body' - happiness and physical facility 3. Understanding the characteristics and activities of 'I' and harmony in 'I' 4. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail 5. To ensure Sanyam and Health. Include practice sessions to discuss the role others have played in making material goods. Identifying from one's own life. Differentiate between prosperity and accumulation. 	6	2
111	 Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship 1. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfillment to ensure mutual happiness. 2. Understanding the meaning of Trust; Difference between intention and competence. 3.Understanding the meaning of Respect, Difference between Respect and differentiation; the other salient values in relationship. 4.Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals. 5. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family. Gratitude as a universal value in relationships. Elicit examples from students' lives. 	4	3
IV	 Understanding Harmony in the Nature and Existence - Whole existence as Coexistence 1. Understanding the harmony in the Nature. 2. Interconnectedness and mutual fulfilment among the four orders of nature recyclability and self-regulation in nature. 3. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space. 4. Holistic perception of harmony at all levels of existence. 5. Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc. 	8	4
V	 Implications of the above Holistic Understanding of Harmony on Professional Ethics 1. Natural acceptance of human values. 2. Definitiveness of Ethical Human Conduct. 3. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order 4. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop 	9	5

appropriate technologies and management patterns for above production systems.			
5. Strategy for transition from the present state to Universal Human			
Order: a. as socially and ecologically responsible engineers,			
technologists b. At the level of society: as mutually enriching institutions			
and organizations.			
Guest Lectures (if any)			
Total Hours	40		
Comparting list of superimentary			

Suggestive list of experiments:

Text Book-Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books-

1. JeevanVidya: EkParichaya, A Nagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.

2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

Modes of Evaluation and Rubric

Questionnaire, Quiz, Presentation and standard procedure will be followed .

List/Links of e-learning resource

https://fdp-aicte-india.org https://vvce.ac.in

Recommendation by Board of studies on	26/02/2022
Approval by Academic council on	
Compiled and designed by	Dr. Manorama Saini and Dr. VeenaDatar
Subject handled by department	Humanities and Management

