

ELECTRONICS & INSTRUMENTATION DEPARTMENT

Category of Course	Course Title	Course Credits - Code			- 3	Theory Paper
		EI 1991	L	Т	Р	Max.Marks-70
DE-7	Process Control-II	(A)	3	-	-	Min.Marks-22
		(A)				Duration-3 Hrs.

Sub.	Subject Name &	Maximum Marks Allotted						
Code	Title		Theory Pa	per	P	Total		
		End	Mid	Quiz,	End	Lab	Mark	
		Sem.	Sem.	Assignme	Sem.	Work/	s	
			MST	nt		Assignme		
						nt		
EI-1881 (A)	Process Control-II	70	20	10	-	-	100	

Course	The purpose of the proposed course is to present control theory that is relevant to
Objectives	the analysis and design of computer-controlled systems, with an emphasis on
	basic concepts and ideas.
Prerequisite	Signals and System Analysis, Feedback Control System
Knowledge	
Course	Analysis and design of discrete-time control systems, implementation of control
Description	systems using digital electronic systems. Applications to electrical systems.
Course	Students will
Outcomes	 CO-1 Acquire knowledge of different Transforms, process and systems. CO-2 Apply knowledge to model continuous-time and discrete-time subsystems CO-3 Analyze the stability of digital process control system. CO-4 Able to identify and resolve implementation issues for computer-based control systems

<u>Syllabus</u>

UNIT-I

Digital Computer as a controller in process control loop, advantages and disadvantages of sampled-data control systems, Block diagram of sampled data / digital control system, discrete time signal, sampling of continuous signal, signal reconstruction, Folding / Aliasing, Ideal sampler, Sampling theorem & Nyquist frequency, Data conversion techniques uses of A/D, D/A and ZOH elements and First order Hold

UNIT-II

Definition and determination of the Z-plane and Z-transform, Mapping between S-plane and Zplane, Z-transform theorems, The inverse Z-transform, Z-transform of system equations, Solution of linear difference equations using Z-transform, The pulse transfer function, Block diagram reduction for systems interconnected through samplers.

UNIT-III

Stability analysis of discrete systems in z-plane, stability analysis by using Bilinear transformation, Jury's stability test, Routh's test, steady-state error analysis of sampled-data control systems. Digital implementation of PID controller, Root locus Analysis.

UNIT-IV

State Space Analysis of Discrete Time Control System :State space representation of discrete time systems, Solution of discrete time state space equations, Pulse transfer function matrix, Eigen Values, Eigen Vectors, Discretization of continuous time state space equations.

UNIT-V

Programmable Logic Controller: Architecture, Ladder Programming, Distributed Control System: Architecture, Fuzzy logic controller (FLC) – block diagram and computational steps, SCADA .

References:

- 1. Kuo, "Digital Control System", Oxford Press.
- 2. K Ogata, "Digital Control System", PHI.
- 3. William Bolton,"Programmable Logic Controllers"

Text Book- Digital Control System Analysis and Design, by C. L. Phillips, H. T. Nagle:

ELECTRONICS & INSTRUMENTATION DEPARTMENT

Category of Course	Course Title	Course Code	Cı	redits	- 3	Theory Paper
DE-7	Sensors and Actuators	EI-1881 (B)	L 3	<u>T</u> -	P -	Max.Marks-70 Min.Marks-22 Duration-3 Hrs.

Sub. Code	Subject Name &		Maxim	Total Marks			
	Title	Theory Paper			I	Practical	
		End	Mid	Quiz,	End	Lab Work/	
		Sem.	Sem.	Assignm	Sem	Assignment	
			MST	ent	•		
EI-1881 (B)	Sensors and Actuators	70	20	10	-	-	100

Course	This course is a study of sensors and actuators. How different sensor and Actuator
Description	works.
Prerequisite	Basics of instrumentation, transducer.
Knowledge	
Course	Upon completion of this course, the student will be able to:
Objectives	 To enable the students to learn various types of sensors, types of calibration, selection criteria and characteristics of the sensors. To provide the knowledge of various actuators used in Industry. To impart students with the knowledge of generalized sensor actuation systems. To impart the students with the benefits of Robotic systems for an automating process.
Course	This course primarily contributes to EI program outcomes that develop students
Outcomes	abilities to:
	 CO1 Select a sensor/ actuator with suitable architecture, specifications for a given real world problem. CO2 Design sensor actuation system for an industry automation problem. CO3 Perform analysis, maintenance, calibration and troubleshooting of the sensor systems. CO4 Suggest a Robotic based automation for Industry application

<u>Syllabus</u>

Unit-I

Introduction to sensors: Sensors: Classification, Selection Criteria, Signal Conditioning, Calibration, Sensors characteristics. Principle of Operation: Linear and Rotational Sensors, Magnetic sensors, Optoelectronic sensors, Thermal sensors, Sensors used for closed loop position control, Sensors for interaction with the environment, Introduction to smart sensors, wireless sensors. Applications and circuitry arrangement of various sensors

Unit-II

Introduction to Actuators: Classification, Selection Criteria, Actuators characteristics. Principle of Operation: Electrical Actuators, Electromechanical Actuators, Electromagnetic Actuators, Magnetostrictive actuator, Hydraulic and Pneumatic Actuators, Hydraulic and Pneumatic Actuators, Smart Material Actuators. Advanced actuators: Ultrasonic motors, artificial muscles, Micro and Nano actuators. Applications and Circuitry arrangement of various actuators.

Unit-III

Introduction to Pneumatic System: components of a pneumatic actuation system,

Compressors, Compressed air Treatment unit, Pneumatic Valves. Application of pneumatics system in automation, Modeling a Pneumatic System for automation, limitations of pneumatics system.

Unit-IV

Introduction to Hydraulics System: components of a hydraulic actuation System, Pumps, Motors and Valves, Application of hydraulic system in automation, hydraulic circuit design for automation, limitations of hydraulic system

Unit-V

Industrial Robotic SystemRobot Control Systems, End Effectors, Sensors in Robotics, Industrial Robot Applications, Robot Programming overview.

Text Books:

- 1. Hydraulics and Pneumatics by Andrew Parr, JAICO Publishing Home, Ahmedabad
- 2. Robotics and Control by R. K. Mittal and I. J. Nagrath, McGraw Hill Education (India) Private Limited.
- 3. The Mechatronics Handbook, CRC Press.
- 4. Sensors & Actuators by Clarence W de Silva, CRC Press.

Reference Books:

- 1. Micro and smart systems K J Vinoy, G K Ananthasuresh, S Gopalakrishnan, K N Bhat, Wiley
- 2. Industrial Automation and Robotics by Er. A. K. Gupta and S. K. Arora, University Science Press, Laxmi Publishing Pvt. Ltd.
- 3 Pneumatic Instrumentation, Majumdhar
- 4 Industrial Hydraulics, Pipenger.

ELECTRONICS & INSTRUMENTATION DEPARTMENT

Category of Course	Course Title	Course Code	Credits - 3			Theory Paper
		EI 1001	L	Т	Р	Max.Marks-70
DE-7	Wireless Networks	EI-1001	3	-	-	Min.Marks-22
		(C)				Duration-3 Hrs.

Sub.	Subject Name &		Maximum Marks Allotted						
Code	Title	Theory Paper				Practical			
		End	Mid Sem.	Quiz/	End	Lab Work/	Marks		
		Sem.	MST	Assignment	Sem.	Assignment			
EI-1881 (C)	Wireless Networks	70	20	10			100		

Course Objectives	To expose the students to understand wireless communication principles and to study the recent trends adopted in cellular systems and wireless standards.
Prerequisite	Basic knowledge of Analog & Digital Communication and Modulation Technique.
Knowledge	
Course	This course covers the concept necessary to design a Wireless communication
Description	system. It Introduces Radio Propagation and Transmission Principles used in
	different wireless communication system.
Course	This course primarily contributes to EI program outcomes that develop students
Outcomes	abilities to:
	CO-1Aware about most advanced standards, the future of digital wireless
	communication systems & networks.
	CO-2 Understand cellular concept, mobile radio environment,
	CO-3 Understand and analyze signals generation, modulation & processing, multiuser systems.
	CO-4 Able to measure interference and provides solution for reduction.

<u>Syllabus</u>

Unit I

Contents Introduction to wireless digital communication systems; block diagram of a typical RF transceiver, radio propagation and cellular engineering concepts; frequency reuse, frequency management and channel assignment, handoff and handoff strategies, trunking theory, coverage and capacity improvements,

Unit II

medium access techniques, FDMA, TDMA, CDMA, SDMA. Modulation methods: Multiple access technologies: Comparison of TDMA, FDMA and CDMA technologies based on their signal separation techniques, advantages, disadvantages and application areas, spectral efficiency calculations for these techniques.

Unit III

Basic digital modulation methods; ASK, PSK and FSK; Quadrature multiplexing and its applications; advanced modulation methods QPSK, QAM, MSK, GMSK, applications of differential coding, OFDM, MIMO.

Unit IV

Spread Spectrum methods: basics; generation and properties of PN sequences, DS-SS system analysis; slow and fast FH-SS system;

Unit V

performance analysis. Interference measurement and reduction, co-channel and other interference, Diversity methods for Mobile Wireless Radio Systems, concepts of diversity branch and signal paths, combining and switching methods, C/N and C/I ratio improvements, average Pe improvements

Suggested Text Books

- 1. Theodore Rappaport, "Wireless Communication: Principles and Practices", Pearson Education 2nd edition
- 2. Feher, "Wireless Digital Communication", PHI
- 3. John Proakis, "Digital communication", Tata- McGraw-Hill, 3rd edition
- 4. Simon Haykin, "Digital communication", Wiley
- 5. Simon Haykin, "Communication systems", Wiley, 4th edition

ELECTRONICS & INSTRUMENTATION DEPARTMENT

Category of Course	Course Title	Course Code	C	Credits - 3		Theory Paper
	Operating Systems &		L	Т	Р	Max.Marks-70
OC-5	Commuter Networks	EI-1882(A)	3	-	-	Min.Marks-22
	Computer Networks					Duration-3 Hrs.

Sub. Code	Subject Name & Title		Total				
		Theory Paper Pra-				Practical	Marks
		End Sem.	Mid Sem. MST	Quiz, Assignment	End Sem.	Lab Work/ Assignment	
EI-1882(A)	Operating Systems & Computer Networks	70	20	10	-	-	100

Course Description	This course is a study of the operating systems services and functions and multi programming, CPU switching algorithms. Concepts of memory management and process management and scheduling, concepts of virtual memory and deadlocks avoidance and study of I/O Systems & I/O Interface. Distributed Systems & Network types.
Prerequisite	Basic of Computers
Knowledge	
Course	Upon completion of this course, the student will be able to:
Objectives	1. General understanding of structure of modern computers
S ~Joon to	2 .Purpose, structure and functions of operating systems
	3. Illustration of key aspects of I/O Systems.
	4. Understanding of Distributed Systems & Remote Sensing.
Course	This course primarily contributes to EI program outcomes that develop students abilities to:
Outcomes	1. Describe the general architecture of computers
	2. Describe, contrast and compare differing structures for operating systems
	3. Understand and analyze theory and implementation of: processes,
	resource control (concurrency etc.), physical and virtual memory,
	Scheduling, I/O and files.
	4. Understanding of Distributed Systems & Remote Services.

<u>Syllabus</u>

Unit-I

Introduction to the principles of operating systems and concurrent programming. Operating system services, multiprogramming, time sharing system, storage structures, system calls, and multiprocessor system. Basic concepts of CPU scheduling, Scheduling criteria, Scheduling algorithms, algorithm evaluate on, multiple processor scheduling

Unit-II

Concepts of memory management, logical and physical address space, swapping, contiguous and non-contiguous allocation, paging, segmentation, paging combined with Segmentation. Concepts of virtual memory, demand and page replacement algorithms, allocation of frames, thrashing, demand segmentation.

Unit-III

Process concept, process scheduling, operations on processes, threads, inter-process communication, precedence graphs, critical section problem, semaphores, classical problems of synchronization. Deadlock problem, deadlock characterization, deadlock prevention, deadlock avoidance, deadlock detection, recovery from deadlock, Methods for deadlock handling.

Unit-IV

I/O systems : Overview, I/O Hardware, Application, I/O Interface, Kernel I/O Subsystem, Transforming I/O Requests to Hardware Operations, Performance.

Unit-V

Distributed Systems: Background, Motivation, Topology, Network Types, Communication, Design Strategies, Networking, Network Operating Systems, Distributed Operating Systems, Remote Services, Design Issues.

Text Books:

- 1. Operating System Concepts, Abrahum Silberschatz & Galvin, John Willy & Sons.
- 2. Operating Systems, Sibshankar Holder & Alex A Arvind, Pearson Education.
- 3. An Introduction to Operating System, Harry M Dietel, Pearson Education.
- 4. Operating System: Principle and Designm Pavitra Pal Choudhry PHI Learning.
- 5. Operating Systems: Internals & Design Principles, 6th Edition, Pearson Education.

ELECTRONICS & INSTRUMENTATION DEPARTMENT

Category of Course	Course Title	Course Code	Credits - 3		- 3	Theory Paper
	Quality And Paliability		L	Т	Р	Max.Marks-70
OC-7	Of Electronic Systems	EI-1882(B)	3	-	-	Min.Marks-22
						Duration-3 Hrs.

Sub.	b. Subject Name &		Maximum Marks Allotted						
Code	Title	Theory Paper			Practical		Total Morks		
		End Sem.	Mid Sem. MST	Quiz/ Assignmen t	End Sem.	Lab Work/ Assignment	WIAIKS		
EI- 1882(B)	Quality And Reliability Of Electronic Systems	70	20	10	-	-	100		

Course	This course primarily contributes to EI program outcomes that develop students
Outcomes	abilities to:
	CO1 Understand the relevance of reliability concepts for electronic systems
	CO2 Develop systematic procedure to Investigate a failure
	CO3 Plot and interpret reliability and survival graphs from the data of a given
	product
	CO4 Identify the methods to determine the system availability and maintenance

Syllabus.

UNIT-I

Introduction: Definition and Importance of Quality and Reliability.

Concepts of Reliability Causes of failure, Life characteristic pattern, Modes of failure, Measures of Reliability, Derivation of the Reliability Function, Reliability Specifications.

UNIT-II

Failure Analysis Technique Failure investigation, Data collections, Data forms, Data Sources Reliability Analysis, Use of Probability distributions, Calculation of performance parameters, Survival curves and their Calculation, Calculation of failure rate, application of Weibull Distribution.

UNIT-III

System Reliability & Modeling: Types of Systems, Series, Parallel, Series-Parallel, and Parallel-Series system, Standby Systems, Types of Standby redundancy. Reliability of different systems, nature of reliability problems in electronic equipment, selection of components.

UNIT-IV

Simulation & Reliability Prediction: Generation of Random Numbers, Generation of random observations from a probability distribution, Applicability of Monte-Carlo Method, Simulation languages.

UNIT-V

Maintainability and Availability Objectives of maintenance, designing for optimum maintainability and measure of maintainability Availability: Uptime ratio, down time ratio and system availability. Quality Reliability and Safety Reliability and Quality Control, Quality Circles, Safety factor, increasing safety factors and Case Studies

Suggested Text Books

- 1. A.K.Govil, Reliability Engineering, TMH, 1983
- 2. B.S.Dhillion, Reliability Engineering in Systems Design and Operation, Van Nostrand Reinhold Co., 1983

ELECTRONICS & INSTRUMENTATION DEPARTMENT

Category of Course	Course Title	Course Code	Credits - 3		- 3	Theory Paper
			L	Т	Р	Max.Marks-70
OC-7	Spectral Estimation	EI-1882(C)	3	-	-	Min.Marks-22
						Duration-3 Hrs.

Sub.	Subject Name & Maximum M				um Marks Allotted		
Code	Title	Theory Paper			Practical		Total Morks
		End	Mid Sem.	Quiz/	End	Lab Work/	
		Sem.	MST	Assignmen	Sem.	Assignment	
				t			
EI- 1882(C)	Spectral Estimation	70	20	10	-	-	100

Prerequisite	Signals & Systems, DSP			
Knowledge				
Course	This course primarily contributes to EI program outcomes that develop students			
Outcomes	abilities to:			
	CO1 Estimate the spectrum of data sequence using non-parametric methods and			
	evaluate the quality of the spectral estimate			
	CO2 Analyze maximum entropy, minimum variance and Burg's parametric			
	methods for AR, MA, and ARMA models.			
	CO3 Compare adaptive filter principles for noise cancellation and signal			
	enhancement using LMS&RLS algorithms			
	CO4 Apply estimation technique for radar signal detection in noise(Neyman -			
	Pearson criterion and Baye's theory)			

Syllabus.

UNIT-I

Power Spectral Density: Energy spectral density of deterministic signals, Power spectral density of random signals, Properties of PSD.

UNIT-II

PSD Estimation : Non-parametric methods Estimation of PSD from finite data, Nonparametric methods : Periodogram properties, bias and variance analysis, Blackman Tuckey method, Window design considerations, time-bandwidth product and resolution - variance trade-offs in window design, Refined periodogram methods : Bartlet method, Welch method

UNIT-III

PSD Estimation: Parametric methods: Parametric method for rational spectra:- Covariance structure of ARMA process, AR signals, Yule-Walker method, Least square method, Levinson-Durbin Algorithm, MA signals, Modified Yule-Walker method, Twostage least square method, Burg method for AR parameter estimation.

UNIT-IV

Parametric method for line spectra:- Models of sinusoidal signals in noise, Non-linear least squares method, Higher order Yule-Walker method, MUSIC and Pisarenko methods, Min-norm method, ESPRIT method.

UNIT-V

Filterbank methods: Filterbank interpretation of periodogram, Slepia base-band filters, refined filterbank method for higher resolution spectral analysis, Capon method, Introduction to higher order spectra.

Suggested Text Books

- 1. J.G.Proakis: DSP Principles, Algorithms and Applications, PHI, 1992.
- 2. Steven M.Kay: Modern Spectral Estimation, Theory and Applications, PHI, 1988.
- 3. Simon Haykin: Adaptive Filters, 4th Edition, Pearson Education Asia, New Delhi, 2002.

