SHOK TECHNOLOGICAL	4	SAMRAT	SAMRAT ASHOK TECHNOLOGICAL INSTITUTE											
GTA	Summer -	(Engineering College), VIDISHA M.P.												
Stores 6	and the second second	(An	Auton	omous	Institute Affi	liated to RGP	V Bhoi	- nal)						
UIDISHA M.P.	4	(1111	DF	'PAR	TMENT	OF CS &	TT	jui)						
Semester/V	oor	VII/IV		Pro	gram	B Tac	L L h _ Inte	rnet o	f Thi	nge				
Subject			ІоТ	2071	Subject		$\frac{n-1}{n}$	10	<u>, 1111</u>					
Category	DE	Subject Code:	DE	- 4A	Name	Object	Oriente	d Prog	gramn	ning				
		Maximum M	Iarks A	llotted	Dreatical	Tatal	Con	tact H	ours	Total Credita				
ES	MS	Assignment/O	uiz	ES	LW	Marks	L	Т	Р	Creatis				
70	20	10		-	-	100	3	1	0	4				
Prerequisit	ites:													
Fundamen	<u>ntals of</u>	Programming Sk	ills											
Course Ob	jective:	uto to undenstan	1		and mainsing	an of chico	4 ania	ار مغم						
• Enabl	e stude	a understand	1 CON	cepts	and principi	les of objec	t one	nted	prog	ramming				
	hodologies using JAVA as a vehicle.													
	learn software development and problem solving using this JAVA technology.													
UNIIS	Descriptions													
	Darad	igm for progr	al Fal	ing	Procedural	us Obje	ot O	riont	eu ed					
	Parau	amming Princip	annin As of	$\bigcap D$	Benefits a	vs. Obje	ons of	f OO	D					
		Concepts: Data	Abe	tractio	, Deficitits di	ilation Inh	ons on eriten		ı. nd					
Ι	Polyn	Polymorphism Introduction of Iava Features of Iava Ryte Code and												
	I oryn Iava V	Virtual Machine	Iava	Devel	opment Kit	(IDK) Basi	cs of	obiec	rts					
	and cl	lasses in Iava tok	tens l	cevwc	ords identifie	ers variable	s data	n type	s					
	and or	perators in java. 7	Tvpe c	casting	g. strict kevw	vord.	s, aut	i ij pe	,,					
	Contr	ol Statements —	If. els	se. nes	sted if. if-els	e ladders. S	witch.	whi	le.					
	do-wł	nile, for, for-eacl	n, bre	ak, c	ontinue. Co	mmand Lin	e Arg	umer	nt,					
	Classe	es and Objects,	Enca	psula	tion, Tightly	y Encapsula	ated of	lasse	es,	0				
11	Neste	d class, Inner cla	lss, an	d An	onymous ini	her class. In	built d	classe	es:	8				
	Objec	t, String, String	Buffe	er, Aı	ray, Vector	. Wrapper o	classes	s. Da	ta					
	memb	pers, member Fun	ction,	Data	Hiding: Visi	ibility modif	iers ir	1 java	ι.					
	Is-A	relationship, Has	s-A re	elatior	nship, Inheri	tance in Ja	va, ty	pes	of					
	inheri	tance, Super an	d sub	clas	s, Method	Signature.	Overle	oadin	g,					
ш	Const	ructor Overload	ling,	Meth	od Overloa	ading, this	and	stat	ic	8				
111	keywo	ord, finalize () 1	netho	d, Ca	sting object	s, Instance	of op	perato	or,	0				
	Overr	iding, covariant	return	type.	Super, fin	al keyword,	overl	loadii	ng					
	VS. OV	verriding. Static co	ontrol	flow,	instance cor	ntrol flow.								
	Abstra	action: Abstract	class	, Inte	rface in Ja	va, differen	ces b	etwee	en					
	classe	es and interfaces.	Defi	ning a	in interface,	implementi	ng int	terfac	æ,					
IV	apply	ing interfaces,	varial	oles 1	in interface	, extending	g inte	erface	es.	8				
	Defin	ing, Creating	and	Acce	ssing a P	ackage, U	nderst	andı	ng					
		SPATH, importi	ng pa	ckage	s. Coupling,	Cohesion.								
	Excep	otion Handling:	Cond	cepts	of Excepti	on handlin	g, ty	pes	of					
N 7	excep	uons, usage of t	гу, са	ucn, t	nrow, throw	s and final	y key	word	is,	0				
V	Dullt-	threading: Con-	cre	aung	UWII EX	different	uu (atura	-8.	ð				
	IVIUITI	unreading: Conc	epts	OI IV.		g, difference	tes D	etwee						
	proces	ss and inread, th	read	me cy	cie, creating	g muitiple t	nreads	s usii	ıg					

		Th	read of	class,	Runn	able i	nterfa	ce. Sy	ynchro	onizati	on, tl	nreads	priorit	ies,		
		int	er thre	ead co	mmur	nicatio	on, dae	emon	thread	ls, dea	dlock	s, threa	ad grou	ips.		
		Int	roduc	tion o	f Java	Micro	o serv	ices.								
Т	otal Ho	urs													40	
С	ourse O	utcom	es:													
C	'O-1 De	efine cl	lasses,	object	s, men	nbers o	of a cla	ass and	l relati	onship	s amo	ng then	n neede	d for a	specifi	с
p	rogram.															
C	CO-2 Wi	rite the	e java a	applica	tion p	rogran	ns usin	ig OOI	Ps prin	ciples.						
C	CO-3 W	rite jav	/a appl	icatior	n on co	onstruc	tors, o	verloa	ding.							
C	'O-4 De	emonst	rate pa	ackage	creati	ng and	l acces	sing m	ember	s of a	packag	ges.				
C	O-5 Ur	ndersta	nd and	l devel	op col	lectior	n frame	e work	and it	s appli	cation	progra	ms.			
Text Book																
1	1. Naughton & Schildt, "The Complete Reference Java 2", Tata McGraw Hill															
2	2. E Balaguruswamy, "Programming in Java", TMH Publications															
R	Reference Books															
1	1. Deitel "Java-How to Program:" Pearson Education. Asia															
2	Hors	tmani	n & C	ornell	"Cor	e Iava	2" (A	Zol I &	ь ID . 9	Sun M	icros	vstems				
3	Ivan	Ravr	$r \alpha c'$	ava 7	, COI 0" BI	PR nu	hlicati	ione	~ 11), ,	Juli Ivi	10105	ystems				
	Iovo	Drog	ommi	ava 2. na foi	tha a	boolut	bineau	innora	D ₁ , D	1100011	DUI	Loorni	na			
4	. Java Java	Duca	ammi	ng 101		Moha	n Don	day D		.usscn	, 1 1 11	Leann	ng			
5.		Progr	amm	ng by	Hari	Mona	n Pan	dey, P	earso	1.						
L	ISU/LINK	s or e-l	earnin	g resol	irce	11710	20.00									
		ittps://	nptel.a	$\frac{c.1n}{c}$	ourses/	11/10	2060									
IV.	lodes of	Evalu	ation a	nd Ku	bric	6			1		-t 0			4		
1	ne evalu	anon i	nodes (ination	of per	Iorman	ce in t	wo mie	1 seme	ster Te	sts, Ql	11Z/ASS1§	gnments	, term v	work, e	na
C	O-PO N	Jannin	<u>σ•</u>	mation	•											
		PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	PO 11	PO 12	PSO1	PSO2	1
	CO-1	1	1	2			• •				- 01			1	2	
	CO-2	2	1	1		1								1	2	
	CO-3	2	1	2		-		1						1	2	
	CO-4	2	1	2				-						-	2	
CO-5 2 1 2														1	-	
R	ecomme	ndatio	n by Bo	hard of	studies	on								-		
A	pproval	by Acr	idemic	counci	lon	011										
C	ompiled	and de	signed	by												
S	ubject ha	ndled	by depa	artment	;				Department of CS & IT							
<u> </u>	J								Department of CS & IT							

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

DEPARTMENT OF CS & IT

Semester/Ye	emester/Year VII/IV Program B.Tech – Internet of Things Subject DE Subject Codes IoT 2071 Subject Disited Signal Processing												
Subject Category	DE	al Signa	l Pro	cessinş	z								
		Maximum M	arks A	llotted	l		Cont	oot U	01186	Total			
	Tł	heory			Practical	Total	Com		Juis	Credits			
ES	MS	Quiz/Assignme	ent	ES	LW	Marks	L	Т	P				
70	20	10				100	3	1	0	4			
Prerequisit	PS*												
Signals an	d Syster	ns											
	la Syster lective:	.115											
• The subject aims to introduce the basic principles, methods, and applications of (
• The subject aims to introduce the basic principles, methods, and applications of digital processing													
	oro ita alu	arithmia comput	otion	and	programmin	a asposts							
• To expr		gommine, comput		ii, anu	programming	g aspects.	nolucia	~ ~	a dali	na and			
• The 100	• The focus is also on establishing a mathematical formalism for analyzing, modeling, and												
simulating electrical systems in the time and frequency domains.													
UNITS				Descrip	otions				H	irs.			
	The D	iscrete Fourier	Tran	sforn	1: Introduction	on to DSP, I	Discret	e					
Т	Fourier	r series, Discrete	Time	e Four	rier Transfor	m (DTFT), I	Discret	e		8			
-	Fourier	r Transform	(DF	T), 1	Properties	of DFT, O	Circula	ır		0			
	convol	ution, linear con	voluti	ion us	ing the DFT								
	Comp	utation of the	Disc	rete	Fourier Tr	ansform: (Goertze	el					
	algoritl	hm, FFT algor	ithm:	Dec	imation in	time (DIT	'), FF	Г					
II	algoritl	hm: Decimation	in fre	equen	cy (DIF), N	-radix comp	utatior	is		8			
	of FFT	, Comparison of	f DIT	and	DIF algorith	nms, Compu	tation	al					
	advant	ages of FFT Algo	orithr	ns									
	FIR fi	Iter Design: Intr	oduct	tion to	Digital filte	ers, Types of	f digita	al					
	filters:	FIR and IIR filte	ers, Fl	IR filt	er design: W	indow meth	od, FI	R					
III	filter of	design: Frequen	cy S	ampli	ng method,	FIR filter	design	n:		8			
	Optima	al filter design m	ethod	l, Rea	lization struc	tures for FI	R filter	s					
	and Fir	nite word length	effect	ts in F	IR filters.								
	IIR fil	ter Design: Con	nparis	son of	f IIR and FI	R digital filt	ers, II	R					
	filter s	pecifications, III	R ^Î filt	er de	sign method	: Impulse In	nvaria	nt					
	method	d, IIR filter d	esign	met	thod: Biline	ar Transfo	rmatio	n		0			
IV	method	d. IIR filter desig	gn me	ethod:	Matched Z	Transform	metho	1.		8			
	Realiza	ation structures f	or III	R filte	ers. Finite wo	ord length ef	fects i	n					
	IIR filt	ers.			,								
	Discre	te Random Si	gnals	&	Power Spe	etrum Esti	matio	n:					
	Introdu	iction to disc	rete	time	random	process. St	pectrui	n					
	represe	entations of infi	nite	energ	v signals.	Response of	f linea	ır		_			
V	system	to random sign	nals.	Introc	luction to si	pectrum esti	matio	1.		8			
Estimates of the auto covariance, power spectrum, Estimates of													
	cross o	ovariance and cr	055 51	pectru	m.			-					
Total Hour	s		200 0		•					40			
Course Out	comes:												
CO1: Unde	erstand th	ne fundamentals of	f DFT										
CO2: App	lv the cor	ncepts of DFT.											

CO3: Design and analysis of FIR filters.

CO4: Design and Analysis of IIR filters.

CO5: Understanding the concept of random signals and its analysis.

Text Book & Reference Books-

1. Digital Signal Processing: Salivahanan, Vallavraj, Gnanapriya, TMH

1. Digital Signal Processing: Principles, Algorithms and Applications: Prokais, Manolakis, Pearson.

- 2. Discrete Time Signal Processing: Oppenheim, Schafer, Buck, Pearson
- 3. Digital Signal Processing: A. Nagoor Kani, McGraw Hill.

Digital Signal Processing: P. Ramesh Babu, Scitech.

List/Links of e-learning resource

https://nptel.ac.in/courses/117102060

Modes of Evaluation and Rubric

The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end semester practical examination.

CO-PO	Mappi	ng:

	so i o hupping.														
	COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	PO ₁₁	PO ₁₂	PSO1	PSO2
	CO-1	2	2	2										1	2
	CO-2	3	2	2	2									2	1
	CO-3	3	2	2	2									2	1
	CO-4	3	2	2	2									2	1
	CO-5	2	2	1	1									1	2
-			•												

Suggestive list of experiments:

1. a)Generation of linear convolution without using built infunction and the function conv in MATLAB

b) Generation of circular convolution without using built in function in MATLAB

- 2. Compute the Discrete Fourier Transform and IDFT with and without FFT and IFFT in MATLAB Implementation of Linear convolution using DFT (Overlap-add and Overlap-Save methods)
- 3. Implementation of Decimation-in-time radix-2 FFT algorithm
- 4. Implementation of Decimation-in-frequency radix-2 FFT algorithm
- 5. Implementation of IIR digital filter using Butterworth method and bilinear transformation
- 6. Implementation of IIR digital filter using Chebyshev (Type I and II) method
- 7. Implementation of FIR digital filter using window (Rectangular, Hamming, Hanning, Bartlett) methods
- 8. Implementation of FIR digital filter using frequency sampling method
- 9. Implementation of optimum equiripple FIR digital filter using window methods
- 10.DTMF Tone Generation and Detection Using Goertzel Algorithm
- 11.Implementation of sampling rate conversion by decimation, interpolation and a rational factor using MATLAB
- a. Implementation of DFT
- b. Sine wave generation using lookup table with values generated from MATLAB

12.IIR and FIR Filter Implementation using DSP Kits.

Recommendation by Board of studies on	
Approval by Academic council on	
Compiled and designed by	
Subject handled by department	Department of CS & IT

(An Autonomous Institute Affiliated to RGPV Bhopal)

DEPARTMENT OF CS & IT

Subject CategoryDESubject Code:IoT 2072 DE - 5ASubject NameReal Time Operating SystemMaximum Marks AllotedPracticalTotal Marks AllotedContact Hours CreditsTotal CreditsESMSAssignment/QuizESLWMarksLTP7020101003104Precequisites: Operating SystemCourse Objective:Operating SystemCourse Objective:Operating SystemCourse Objective:Operating SystemCourse Objective:Operating SystemCourse objective:Operating SystemOperating SystemCourse objective:Operating SystemOperating SystemCourse objective:Operating SystemOperating SystemOperating SystemOperating SystemOperating SystemCourse objective:Operating SystemOperating SystemOperating SystemOperating SystemOperating SystemOperating SystemOperating SystemOperating SystemOperating SystemOperating System	Semester/Ye	ar	VII/IV		Pro	gram	B.Tech	3. Tech – Internet of Things					
Maximum Marks Allotted Contact Hours Total Credits ES MS Assignment/Quiz ES LW Marks L T P 70 20 10 - - 100 3 1 0 4 Prerequisites: Operating System Course Objective: • The objective of the course is to introduce the principles shared by many real-time operating systems, and their use in the development of embedded multitasking application software. UNITS Descriptions Basics of real-time concepts: Brief history of Real Time Systems, A brief history of Embedded Systems. Terminology: RTOS concepts and definitions, real-time design issues, examples, Hardware 8 8 Considerations: logic states, CPU, memory, I/O, Architectures, RTOS building blocks, Real-Time Kernel. 8 8 II Process management: Concepts, scheduling algorithms Threads: Multi-threading models, threading issues, thread libraries, synchronization 8 III Process Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash flesystems. 8 IVO Resources: Wors	Subject Category	DE	Subject Code:	IoT DE	2072 - 5A	Subject Name	Real Ti	me Op	erating	g Syste	em		
$\begin{tabular}{ c c c c c } \hline Total Marks & Credits Credits Credits Credits Credits (Credits Credits Credits (Credits Credits (Credits $			Maximum M	arks A	llotted	•	_	Cont	oot He	nire	Total		
ESMSAssignment/QuizESLWMarksLTP7020101003104Prerequisites:Operating SystemCourse Objective:•The objective of the course is to introduce the principles shared by many real-time operating systems, and their use in the development of embedded multitasking application software.UNITsDescriptionsHrs.Basics of real-time concepts: Brief history of Real Time Systems, A brief history of Embedded Systems. Terminology: RTOS concepts and definitions, real-time design issues, examples, Hardware Considerations: logic states, CPU, memory, I/O, Architectures, RTOS building blocks, Real-Time Kernel.8IIProcess management: Concepts, scheduling, IPC, RPC, CPU Scheduling, scheduling criteria, scheduling algorithms Threads: Multi- threading models, threading issues, thread libraries, synchronization Mutex: creating, deleting, prioritizing mutex, mutex internals.8IIII/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems.8IVEmbedded System Components: Firmware components, RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging.8VPerformance Tuning: Basic concepts of drill-down tuning, hardware – supported profil		Th	neory			Practical	Total	Com		Juis	Credits		
702010-1003104Prerequisites:Operating SystemCourse Objective:• The objective of the course is to introduce the principles shared by many real-time operating systems, and their use in the development of embedded multitasking application software.UNITSDescriptionsHrs.Basics of real-time concepts: Brief history of Real Time Systems, A brief history of Embedded Systems. Terminology: RTOS concepts and definitions, real-time design issues, examples, Hardware Considerations: logic states, CPU, memory, I/O, Architectures, RTOS building blocks, Real-Time Kernel.8IIProcess management: Concepts, scheduling, IPC, RPC, CPU Scheduling, scheduling criteria, scheduling algorithms Threads: Multi- threading models, threading issues, thread libraries, synchronization Mutex: creating, deleting, prioritizing mutex, mutex internals.8IIII/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems.8IVEmbedded System Components: Firmware components. RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging.8VPerformance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Bui	ES	MS	Assignment/Q	uiz	ES	LW	Marks	L	T	P ^			
Prerequisites: Operating System Course Objective: • The objective of the course is to introduce the principles shared by many real-time operating systems, and their use in the development of embedded multitasking application software. UNITs Descriptions Hrs. Basics of real-time concepts: Brief history of Real Time Systems, A brief history of Embedded Systems. Terminology: RTOS concepts and definitions, real-time design issues, examples, Hardware 8 Considerations: logic states, CPU, memory, I/O, Architectures, RTOS building blocks, Real-Time Kernel. II Process management: Concepts, scheduling IPC, RPC, CPU Scheduling, scheduling criteria, scheduling algorithms Threads: Multi-threading models, threading issues, thread libraries, synchronization Mutex: creating, deleting, prioritizing mutex, mutex internals. 8 III I/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems. 8 III Embedded System Components: Firmware components, RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging. 8 V Performance Tuning: Basic concepts of drill-down tuning, h	70	20	10		-	-	100	3	1	0	4		
Interview 1 Course Objective: Course Objective: The objective of the course is to introduce the principles shared by many real-time operating systems, and their use in the development of embedded multitasking application software. UNITS Descriptions Hrs. Basics of real-time concepts: Brief history of Real Time Systems, A brief history of Embedded Systems. Terminology: RTOS concepts and definitions, real-time design issues, examples, Hardware 8 Roconsiderations: logic states, CPU, memory, I/O, Architectures, RTOS building blocks, Real-Time Kernel. II Process management: Concepts, scheduling, IPC, RPC, CPU Scheduling, scheduling criteria, scheduling algorithms Threads: Multi-threading models, threading issues, thread libraries, synchronization Mutex: creating, deleting, prioritizing mutex, mutex internals. 8 III I/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems. 8 IV Embedded System Components: Firmware components, RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging. 8 IV Performance Tuning: Basic concepts of drill-down tuning, ha	Prerequisit	es:											
Course Objective: • The objective of the course is to introduce the principles shared by many real-time operating systems, and their use in the development of embedded multitasking application software. UNITs Descriptions Hrs. Basics of real-time concepts: Brief history of Real Time Systems, A brief history of Embedded Systems. Terminology: RTOS concepts and definitions, real-time design issues, examples, Hardware 8 I Basics of real-time design issues, examples, Hardware 8 Considerations: logic states, CPU, memory, I/O, Architectures, RTOS building blocks, Real-Time Kernel. Process management: Concepts, scheduling, IPC, RPC, CPU Scheduling, scheduling criteria, scheduling algorithms Threads: Multi-threading models, threading issues, thread libraries, synchronization Mutex: creating, deleting, prioritizing mutex, mutex internals. 8 III I/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems. 8 IV Embedded System Components: Firmware components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging. 8 V Performance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimiza	Operating S	ystem											
 The objective of the course is to introduce the principles shared by many real-time operating systems, and their use in the development of embedded multitasking application software. UNITs Descriptions Hrs. Basics of real-time concepts: Brief history of Real Time Systems, A brief history of Embedded Systems. Terminology: RTOS concepts and definitions, real-time design issues, examples, Hardware 8 Considerations: logic states, CPU, memory, I/O, Architectures, RTOS building blocks, Real-Time Kernel. Process management: Concepts, scheduling, IPC, RPC, CPU Scheduling, scheduling criteria, scheduling algorithms Threads: Multi-threading models, threading insues, thread libraries, synchronization Mutex: creating, deleting, prioritizing mutex, mutex internals. I/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems. Embedded System Components: Firmware components, RTOS system software mechanisms, Software application components, Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging. V Supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations. 	Course Obj												
systems, and their use in the development of embedded multitasking application software. UNITs Descriptions Hrs. Basics of real-time concepts: Brief history of Real Time Systems, A brief history of Embedded Systems. Terminology: RTOS concepts and definitions, real-time design issues, examples, Hardware 8 I Basics of real-time concepts: Brief history of Real Time Systems, A brief history of Embedded Systems. Terminology: RTOS concepts and definitions, real-time design issues, examples, Hardware 8 I Process considerations: logic states, CPU, memory, I/O, Architectures, RTOS building blocks, Real-Time Kernel. Process management: Concepts, scheduling, IPC, RPC, CPU Scheduling, scheduling criteria, scheduling algorithms Threads: Multi-threading models, threading issues, thread libraries, synchronization Mutex: creating, deleting, prioritizing mutex, mutex internals. 8 III I/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems. 8 IV Embedded System Components: Firmware components. RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging. 8 V Performance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building	• The ob	• The objective of the course is to introduce the principles shared by many re-											
UNITsDescriptionsHrs.Basics of real-time concepts: Brief history of Real Time Systems, A brief history of Embedded Systems. Terminology: RTOS concepts and definitions, real-time design issues, examples, Hardware Considerations: logic states, CPU, memory, I/O, Architectures, RTOS 	system	systems, and their use in the development of embedded multitasking application											
IBasics of real-time concepts: Brief history of Real Time Systems, A brief history of Embedded Systems. Terminology: RTOS concepts and definitions, real-time design issues, examples, Hardware Considerations: logic states, CPU, memory, I/O, Architectures, RTOS building blocks, Real-Time Kernel.8IIProcess management: Concepts, scheduling, IPC, RPC, CPU Scheduling, scheduling criteria, scheduling algorithms Threads: Multi- threading models, threading issues, thread libraries, synchronization Mutex: creating, deleting, prioritizing mutex, mutex internals.8IIII/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems.8IVEmbedded System Components: Firmware components, RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging.8VPerformance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations.8	UNITs			Н	rs.								
Ibrief history of Embedded Systems. Terminology: RTOS concepts and definitions, real-time design issues, examples, Hardware Considerations: logic states, CPU, memory, I/O, Architectures, RTOS building blocks, Real-Time Kernel.8IIProcess management: Concepts, scheduling, IPC, RPC, CPU Scheduling, scheduling criteria, scheduling algorithms Threads: Multi- threading models, threading issues, thread libraries, synchronization Mutex: creating, deleting, prioritizing mutex, mutex internals.8IIII/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems.8IVEmbedded System Components: Firmware components, RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging.8VPerformance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations.8		Basics	of real-time conc	epts:	Brief	history of Re	al Time Sys	tems,	A				
Idefinitions, real-time design issues, examples, Hardware Considerations: logic states, CPU, memory, I/O, Architectures, RTOS building blocks, Real-Time Kernel.8IIProcess management: Concepts, scheduling, IPC, RPC, CPU Scheduling, scheduling criteria, scheduling algorithms Threads: Multi- threading models, threading issues, thread libraries, synchronization Mutex: creating, deleting, prioritizing mutex, mutex internals.8IIII/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems.8IVEmbedded System Components: Firmware components, RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging.8VPerformance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations.8Total Hours40		brief his	story of Embedde	d Sys	tems.	Terminology:	RTOS conce	epts ar	d				
Considerations: logic states, CPU, memory, I/O, Architectures, RTOS building blocks, Real-Time Kernel.IIProcess management: Concepts, scheduling, IPC, RPC, CPU Scheduling, scheduling criteria, scheduling algorithms Threads: Multi- threading models, threading issues, thread libraries, synchronization Mutex: creating, deleting, prioritizing mutex, mutex internals.8IIII/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems.8IVEmbedded System Components: Firmware components, RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging.8VPerformance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations.8	Ι	definitio	ons, real-time	des	ign	issues, ex	amples, H	ardwa	re		8		
building blocks, Real-Time Kernel.IIProcess management: Concepts, scheduling, IPC, RPC, CPU Scheduling, scheduling criteria, scheduling algorithms Threads: Multi- threading models, threading issues, thread libraries, synchronization Mutex: creating, deleting, prioritizing mutex, mutex internals.8IIII/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems.8IVEmbedded System Components: Firmware components, RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging.8VPerformance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations.8		Conside	erations: logic sta	tes, C	PU, n	nemory, I/O,	Architectures	, RTO	S				
IIProcess scheduling, scheduling criteria, scheduling, IPC, RPC, CPU Scheduling, scheduling criteria, scheduling algorithms Threads: Multi- threading models, threading issues, thread libraries, synchronization Mutex: creating, deleting, prioritizing mutex, mutex internals.8IIII/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems.8IVEmbedded System Components: Firmware components, RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging.8VPerformance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations.8		building	g blocks, Real-Tin	ne Kei	rnel.	•							
IIScheduling, scheduling criteria, scheduling algorithms Threads: Multi- threading models, threading issues, thread libraries, synchronization Mutex: creating, deleting, prioritizing mutex, mutex internals.8IIII/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems.8IVEmbedded System Components: Firmware components, RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging.8VPerformance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations.8		Process	management:	Conc	epts,	scheduling,	IPC, RPC	, CP	U				
IIthreading models, threading issues, thread libraries, synchronization Mutex: creating, deleting, prioritizing mutex, mutex internals.oIIII/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems.8IVEmbedded System Components: Firmware components, RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging.8VPerformance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations.8	П	Schedul	ling, scheduling c	riteria	ı, sche	duling algorit	thms Threads	: Mult	i-		8		
Mutex: creating, deleting, prioritizing mutex, mutex internals.I/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems.8IVEmbedded System Components: Firmware components, RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging.8VPerformance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations.8	11	threadin	ng models, thread	ding i	issues,	thread libra	ries, synchro	nizatio	n		0		
IIII/O Resources: Worst-case Execution time, Intermediate I/O, Execution efficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems.8IVEmbedded System Components: Firmware components, RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging.8VPerformance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations.8		Mutex:	creating, deleting	, prior	itizing	mutex, mutez	x internals.						
IIIefficiency, I/O Architecture. Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash filesystems.8IVEmbedded System Components: Firmware components, RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging.8VPerformance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations.8		I/O Res	ources: Worst-cas	se Exe	cutior	time, Interm	ediate I/O, Ez	xecutio	n				
IVEmbedded System Components: Firmware components, RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging.8VPerformance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations.8	III	efficien	cy, I/O Architectu	ıre. M	emory	: Physical hie	erarchy, Capa	city ar	d		8		
IVEmbedded System Components: Firmware components, RTOS system software mechanisms, Software application components. Debugging Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging.8VPerformance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations.8		allocatio	on, Shared Memo	ry, EC	C Me	mory, Flash fi	lesystems.						
IV software mechanisms, Software application components. Debugging 8 IV Components: Exceptions assert, Checking return codes, Single-step 8 debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging. 8 V Performance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations. 8 Total Hours 40		Embedd	led System Com	ponent	s: Firi	mware compo	onents, RTOS	syste	n				
IV Components: Exceptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging. 8 V Performance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations. 8 Total Hours 40		software	e mechanisms, S	offwa	re ap	plication con	ponents. De	buggin	g				
debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self-test and diagnostics, External test equipment, Application-level debugging. V Performance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations. Total Hours	IV	Compoi	nents: Exceptions	s asse	ert, Cr	necking retur	n codes, Sin	gle-ste	р		8		
V Performance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations. 8 Total Hours 40		aebuggi	ing, kernel sched	uler	traces.	, lest access	ports, 1 rac	e port	s,				
V Performance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations. 8 Total Hours		Applies	Jii sell-test al	in a	lagnos	ucs, Extern	ai test eqt	npmen	ι,				
V supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations. 8 Total Hours 40		Perform	ance Tuning Po	nig.	nconto	of drill dow	n tuning her	dwara					
V supported profiling and tracing, building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations. 8 Total Hours 40		support	ed profiling and	sic co		ding perform	ance monitor	ing in	-				
optimizations. 40	V	software	e Path length I	Interne	ency	and Call free	ulency Fund	ament	al		8		
Total Hours 40		ontimiz	ament	u									
	Total Hours	s spinne								4	40		

Course Outcomes:

CO1: To understand the functionality and selection criteria of various operating systems when designing automation systems for technological complexes in real time.

CO2: To know the structure, basic principles of construction and the scope of use of embedded operating systems.

CO3: To be able to program applied tasks for embedded systems and be able to control the processes occurring in real-time systems.

CO4: To have practical skills for solving problems of designing control and monitoring systems for technological complexes in real time based on existing operating systems and programming languages.

CO5: To understand the working of real-time operating systems and real-time database

Text Book

1. Jane W. S. Liu, "Real-time systems", Prentice Hall, 20002.

Reference Books

1. Philips A. Laplante, "Real-Time System Design and Analysis", 3rd Edition, John Wley& Sons, 2004

List/Links of e-learning resource

• https://nptel.ac.in/courses/117105135

Modes of Evaluation and Rubric

The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end semester practical examination.

C	CO-PO Mapping:															
	COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	PO ₁₁	PO 12	PSO1	PSO2	
	CO-1	1	1	1										1	2	
CO-2 2 1 1														1	2	
CO-3 1 1 2											1			1	2	
	CO-4	2	1	1							1				2	
	CO-5	1	1	1										1		
Re	ecomme	ndation	ı by Bo	ard of	studies	on										
Approval by Academic council on																
Compiled and designed by																
Subject handled by department									Department of CS & IT							

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

DEPARTMENT OF CS & IT

Semester/Ye	ster/Year VII/IV Program B.Tech – Internet of Things													
Subject	DE	Subject Code:	ІоТ	2072	Subject	W	ireless	Netwo	orks					
Category			DE	<u>– 5B</u>	Name	•••			JI K 5					
	т	Maximum M	arks A	llotted	D	T ()	Cont	act H	ours	Total				
ES		heory		FC	Practical	l otal Morks	т	т	D	Creatts				
<u>E5</u> 70	20	Assignment/Q	uiz	Eð			2 2	1	r 0	4				
70	20	10		-	-	100	5	1	U	-				
Prerequisit	es:													
Computer N	letworks													
Course Obj	jective:													
• To pr	ovide a	n overview of	Wirele	ess C	ommunicatior	n networks	and i	ts ap	plicat	tions in				
commu	communication engineering.													
• Enable	Enable students to understand the contribution of Wireless Communication networks to overall													
techno	logical g	growth, make then	n unde	erstand	d related term	inology, prin	ciples.	devi	ces. s	chemes.				
concep	concepts, algorithms and different methodologies used in Wireless Communication Networks.													
UNITS	ITs Descriptions Hrs.													
	Introdu	uction of Wireless	Netw	orks.	Different Gei	perations of '	Wirele	22						
	Networ	rks Characteristic	s of th	ne Wi	reless Medium	n: Radio Pro	nagatic	on						
T	Mecha	nisms Path Loss	Mod	leling	and Signal	Coverage F	ffect	of	8					
1	Multin	ath and Donnle	r ('hanne	1 Measurem	ent and M	Iodelir	οn		0				
	Techni	aur and Doppic	л, с	manne	i Wiedsurein	cht and iv	Ioucin	15						
	Networ	rk Planning: Introd	luction	n Wir	eless Network	Topologies	Cellul	ar						
	Topolo	ov Cell Fund	ament	ale '	Signal to	Interferences	Rad	io						
п	Calcule	ations Network Pl	annin	a for (TDMA System	ns Wireless	Netwo	rk		8				
11	Operat	ions: Mobility N	Annin Annao	g IUI (DIVIA System	sources and	Dow	or		0				
	Manag	ament	vianag	çinem	i, Radio Re	sources and	100							
	Multin	la Division Tack	mique	se FI			OFDI	Л						
	SDMA	Comparison of	Mul	tinla	Division Tec	hniques Mo	dulatio	/1,)n						
III	Toohni	auos AM EM E		rec	DIVISION TEC	160AM Mol	vilo Do	n to		Q				
111	Notwo	rke: Introduction	Doto (Oriont	od CDPD Not	TUQAM MUL		LA E		0				
	and Ui	gh Data Patas SM	Data V S in C	SIM 1	Mobile Applie	work, OTKS	$\frac{1}{2}$							
	Introdu	gli Dala Kales, Sivi		$\frac{15101}{15100}$	lution of WI	AN Winglog	$\frac{18}{2}$							
	Natura	religing Tashnalasi		Len	Area Natura	AIN, WIICIES	s non	le						
IV	networ	TKING, Technologie	es for	Anala	e Area Netwo	IK (HAN), U	J	W		8				
	OI IEF	er,												
	where	$\frac{88 \text{ A I WI, \Pi PEKL}}{802.15 \text{ WDAN}}$	TLass	•DE	Diverse eth I		1							
V	IEEE Dlust	802.15 WPAN,	HOM	ekf,	Bluetootn, I	tion to 2C				0				
v	Blueto	our and $\delta 02.11$, A	unoc	INCLU	JIKS, Introduc	1011 to 2G, 3	U, LI	E		ð				
Tatal II.	(4G), a	ind 5G networks.						-+		40				
Total Hour	S comes:									+0				

CO1: To understand the functionality and selection criteria of various operating systems when designing automation systems for technological complexes in real time.

CO2: To know the structure, basic principles of construction and the scope of use of embedded operating systems.

CO3: To be able to program applied tasks for embedded systems and be able to control the processes occurring in real-time systems.

CO4: To have practical skills for solving problems of designing control and monitoring systems for

technological complexes in real time based on existing operating systems and programming languages.

CO5: Implement different type of applications for smart phones and mobile devices with latest network strategies

Text Book & Reference Books-

1. Kaveh Pahlavan, Prashant Krishnamurthy, "principles of Wireless Networks", PHI.

- 1. Qing- An Zeng, Dharma Prakash Agrawal, "Introduction to Wireless and Mobile Systems", CENGAGE Learning.
- 2. Sumit Kasera, Nishit Narang, A P Priyanka, "2.5 G Mobile Networks: GPRS and EDGE", TMH
- 3. Dr. Kamilo Feher, "Wireless Digital Communications", PHI.
- 4. Jochen Schiller, "Mobile Communications", PEARSON.

List/Links of e-learning resource

• https://nptel.ac.in/courses/106105172

Modes of Evaluation and Rubric

The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end semester practical examination.

CO-PO Mapping: PO₁ PO₂ PO₄ PO₅ PO₆ PO₃ PO₇ PO₈ PO₉ PO₁ PO₁₁ PO₁₂ PSO1 PSO2 COs CO-1 1 1 2 2 1 CO-2 2 1 1 1 2 CO-3 1 1 2 1 1 2 CO-4 2 1 2 2 1 CO-5 1 1 2 1 Recommendation by Board of studies on Approval by Academic council on Compiled and designed by Subject handled by department Department of CS & IT

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

DEPARTMENT OF CS & IT

Semester/Year	•	VII/IV	Prog	ram	B.Tech – Internet of Things							
Subject Category	DE	Subject Code:	IoT 2073 DE - 6A	Subject Name	Found	ation	of D	ata S	cience			
		Maximum Marks	s Allotted			Cont	aat U	011100	Total			
	The	eory	Prac	tical	Total	Cont	асі п	ours	Credits			
ES	MS	Assignment/Quiz	ES	LW	Marks	L	Т	Р				
70 20 10					100	3	0	0	3			

Prerequisites:

Basic Knowledge of Mathematics

Course Objective:

• To provide the knowledge and expertise to become a proficient data scientist;

• Demonstrate an understanding of statistics and machine learning concepts that are vital for data science;

• Produce Python code to statistically analyze a dataset;

• Critically evaluate data visualizations based on their design and use for communicating stories from data;

UNITs	Descriptions	Hrs.
Ι	Data Science-What is Data Science, Need for Data Science, Difference between Data Science & Business Intelligence, Data Science Components, Tools for Data Science, Data Science Life cycle, Applications of Data Science, Data Science Ethics. Representation of Data- Types of data, primary, secondary, quantitative and qualitative data. Types of Measurements, nominal, ordinal, discrete and continuous data.	7
п	Presentation of data by tables, construction of frequency distributions for discrete and continuous data. Graphical representation of a frequency distribution by histogram and frequency polygon, cumulative frequency distributions. Data Pre-processing- Knowing Data, Data Cleaning, Data Integration, Data Selection, Data Transformation	7
III	Descriptive Statistics-Arithmetic mean, Median, Mode, Geometric mean, Harmonic mean. Partition values: Quartiles, Deciles and percentiles. Measures of dispersion: Mean deviation, Quartile deviation, Standard deviation, Coefficient of variation. Moments: measures of skewness, Kurtosis	7
IV	Correlation-Scatter plot, Karl Pearson coefficient of correlation, Spearman's rank correlation coefficient, multiple and partial correlations. Regression: Concept of errors, Principles of Least Square, Simple linear regression and its properties. Types of Regressions.	7
V	Basics of Big Data, Problem handling large data, general techniques for handling large data, Basic concept of Machine Learning, training model, validating model, supervised &	7

	un	sup	ervise	d lear	ning.										
Total Hours Course Outcomes:													3	5	
Course Out	comes	:													
CO1: To e	xplai	n h	ow da	ta is c	ollecte	ed, ma	naged	and st	tored f	or dat	a scien	ce.			
СО2 : То и	ınder	stan	d the	key co	oncept	s in da	ata sci	ence, i	ncludi	ng the	eir real-	world	applica	ations	
and the too	olkit ı	ised	l by da	ata sci	entists	5.									
CO3 : To i	mple	mer	nt data	colle	ction a	and ma	anager	nent s	cripts	using	Mongo	DB.			
CO4: Exa	mine	the	techn	iques	of Dat	a Vist	Jalizat	ion.	-	•	-				
CO5: Ider	ntifica	ntior	n of va	arious	applic	ations	s of Da	ata Sci	ence.						
Text Bool	s				<u> </u>										
1. "Introdu	icing	Dat	a Scie	ence"	by Da	vy Cie	elen, A	rno D	. B. M	[eysma	an, Mo	hamed	Ali, 1	st	
Edition, M	lannii	ng			2	2				2			2		
Publicatio	ns Co).													
2. "An Int	oduc	tion	to Pr	obabil	litv an	d Stat	istics"	by Ro	hatgi	V.K a	nd Sale	eh E. 3	rd		
Edition, Jo	hn W	/ilev	v & So	ons In	cNe	w Jers	ev.	5	0) -			
3. "Data N	lining	o Co	ncent	& Те	chnia	ues" b	v Han	& Ke	mber.	3rd Ed	lition.	The Ma	organ		
Kaufmann.															
Reference Books															
1 Joel Gru	$\frac{1}{15}$ D	ata S	Scienc	e fron	n Scra	tch Sl	hroff F	Publisł	r/0	Reilly	Publis	her Me	dia		
2 Annaly	13, D. 1 No	Kei	nneth	Soo N	Num s	ense T	Data So	cience	for th	e Lavi	nan Sl	hroff P	uhlishe	-r	
Publisher	11,6,	1101	mem	500,1	vuin 5		Juliu Di		101 11	c Luyi	man, o		donsin	21	
3 Cathy C)'Nei	lan	d Raci	hel Sc	hutt T	Doing	Data S	Scienc	e Stra	ioht T	alk fro	m The	Frontl	ine	
O'Reilly E	hiblic	her	u Itao		11411. 1	Joing	Data	Jerene	c , 5114	igin i			1 Ionu	me.	
List/Link		lea	rnina	resol	irce										
LISU LINK	$\frac{1}{2}$	ntal			$\frac{1}{00}/106$	1061	70								
Modes of	Fval	nati	on an	d Rul	<u>bric</u>	1001	<u>19</u>								
The evalue	tion	mod	tes co	neist (of nerf	ormar	in in i	two m	id sen	nester '	Tests ($\frac{1}{2}$	eciann	nents	
term work	end	sem	les co	nracti		amina	tion	two m	iu sen	lester	10303, 1	Zuiz	ssigiii	ients,	
	, enu Ianni	ng	icster	practi		amma									
	$\mathbf{D}_1 \mathbf{P}$	\mathbf{O}_2	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	PO 11	PO 12	PSO1	PSO2	
CO-1 1		3	2 0 0	2	100	200	101	100	10,	1 01	1011	1012	1	2	
CO-2 2		2											2	2	
CO-3 2		1	3										1	2	
CO-4 1		2											3	1	
CO-5 3		3		2									2	3	
Recomme	ndatio	on b	у Воа	rd of	studie	s on									
Approval	by Ac	cade	emic c	ouncil	lon										
Compiled	and c	lesi	gned b)y											
Subject ha	ndled	l by	depar	tment					Dep	artme	nt of C	S & IT			
		-	•						•						

(An Autonomous Institute Affiliated to RGPV Bhopal)

DEPARTMENT OF CS & IT

Semester/Y	ear	VII/IV		Pro	gram	B.Tecl	ı – Inte	rnet of	f Thin	gs			
Subject Category	DE	Subject Code:	IoT OC	2073 - 6B	Subject Name		UI/	UX		2			
		Maximum M	larks A	llotted	l		Conf	act H	ours	Total			
	T	heory			Practical	Total	-			Credits			
ES	MS	Assignment/Q	uiz	ES	LW	Marks		T	<u>P</u>				
/0	20	10		-	-	100	3	U	3	3			
Prerequisit	es:												
Knowledge	e of com	puter programming	g with	any p	rogramming 1	anguage like	C/C++	, Java	ι.				
Course Obj	jective:		-		<u> </u>								
• The air	m of the	UI/UX course is t	o prov	vide st	udents with th	ne knowledge	e of use	er- cei	ntered	l design,			
user-ca	antered a	methods in desig	gn, gi	raphic	design on	screens, sim	ulation	1 and	l pro	totyping			
technic	ques.	-		-	-				-				
• Also u	sability	testing methods,	interf	ace te	chnologies a	nd user cent	ered d	esign	in c	orporate			
perspe	ctive.	C			C			Ū		•			
UNITs			Ι	Descrip	otions				В	Irs.			
	Introdu	ction to the UI:	Wha	t is	User Interfac	e Design (U	JI) -TI	ne					
	Introduction to the UI: What is User Interface Design (UI) -The Relationship Between UI and UX, Roles in UI/UX, A Brief Historical												
	Relationship Between UI and UX, Roles in UI/UX, A Brief Historical Overview of Interface Design, Interface Conventions, Approaches to												
Ι	Screen	Based UI, Templ	late vs	S Con	tent, Formal l	Elements of 1	Interfa	ce		7			
	Design	, Active Elements	of In	terface	e Design, Cor	nposing the I	Elemen	ts					
	of Inter	rface Design, UI I	Design	1 Proc	ess, Visual C	ommunicatio	n desig	gn					
	compo	nent in Interface D	esign.		·			·					
	Introdu	ction to UX: UX	Basic	cs- Fo	undation of U	JX design, G	ood ar	ıd					
тт	poor d	lesign, Understand	ding `	Your	Users, Desig	ning the Ex	perien	ce		7			
11	Elemer	nts of user Exper	rience	, Vist	ual Design F	Principles, Fu	inction	al		/			
	Layout	, Interaction design	n.										
TTT	Introdu	ction to the In	terfac	e, Na	avigation De	sign, User	Testin	g,		7			
111	Develo	ping and Releasing	g You	r Desi	gn.	-		-		/			
	UI/UX	K Design Tools: U	Jser S	tudy-	Interviews, v	vriting person	nas: us	er					
	and de	vice personas, Us	er Co	ntext,	Building Lov	w Fidelity W	irefran	ne					
IV	and H	igh-Fidelity Polis	hed V	Wirefr	ame Using	wire framing	g Tool	.s,		7			
	Creatin	ng the working Pr	ototy	pe usi	ng Prototypin	ig tools, Sha	ring aı	ıd					
	Exporti	ing Design.		-		-	-						
	Inform	ation and Data S	study:	Unde	erstanding and	d collection	of dat	a,					
V	method	ls of collecting d	ata, to	ools f	or collecting	data, analysi	ng dat	a,		7			
v	using d	lata analytics tools	like (Google	e analytics for	user experien	nce, he	at		1			
	mapping tools.												
Total Hour	S									35			
Course Out	tcomes:	-		-									
CO1: Und	erstand i	terative user-cente	red de	esign c	of graphical us	er interfaces.							

CO2: Apply the user Interfaces to different devices and requirements.

CO3: Create high quality professional documents and artifacts related to the design process.

CO4: Students are capable of programming using mainstream programming languages, can conduct fine software-engineering practices to implement problem-solving schemes as correct, efficient, and well-structured programs

CO5: Students have the logical, algorithmic, and mathematical capability to model and analyze real-

world problems in different application domains												
Text Book &												
1. A Project Guide to UX Design: For user experience designers in the field or in the making (2nd.												
ed.). Russ Unger and Carolyn Chandler. New Riders Publishing, USA, 2012												
Reference Books												
1. The Elements of User Experience: User-Centered Design for the Web and Beyond, Second												
Edition Jesse James Garrett, Pearson Education. 2011												
2. The Essential Guide to User Interface Design: An Introduction to GUI Design Principles and												
Techniques, Third Edition Wilbert O. Galitz, Wiley Publishing, 2007.												
3. The UX Book Process and Guidelines for Ensuring a Quality User Experience, Rex Hartson and												
Pardha S. Pyla, Elsevier, 2012.												
List/Links of e-learning resource												
https://onlinecourses.nptel.ac.in/noc21_ar05/preview												
• https://oninecourses.nptei.ac.in/hoc21_ar05/preview Modes of Evaluation and Rubric												
The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end												
semester practical examination.												
CO-PO Mapping:												
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO11 PO12 PS01 PS02												
CO-2 1 1 1 2												
CO-3 1 1 1												
CO-4 1 1 1 1												
CO-5 1 1 1 1 1												
Recommendation by Board of studies on												
Approval by Academic council on												
Compiled and designed by												
Subject handled by department Department of CS & IT												

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

DEPARTMENT OF CS & IT

Semester/Ye	ear	VII/III		Pro	gram	B.Tech	– Inter	met o	f Thin	gs
Subject Category	OC	Subject Code:	IoT OC	2074 - 3A	Subject Name	Co	mputer	Grap	ohics	
		Maximum M	arks A	llotted			Cont	aat U	01116	Total
	Th	neory			Practical	Total	Com		Juis	Credits
ES	MS	Quiz/Assignme	ent	ES	LW	Marks	L	Т	P	
70	20	10				100	3	0	0	3
Prerequisit	es:									
Basic Kno	wledge	of Matrix, 2-dim	ensic	nal &	3-dimensio	nal concepts.				
Course Obj	ective:									
• Under	stand the	basic concepts of	comp	outer g	raphics and it	s applications				
Apply	and anal	yze the algorithm	s to dr	aw gra	aphics output	primitives.				
 Apply and create 2-D & 3-D transformation on various objects. 										
LINITS			Г)escrin	tions	,			Н	[rs
UIIIS	Basia (of Computer Gr	onhior		nlightions of	computor a	rophia	,		
	Diamlar	daviage Cethod	apines	, Ap	plications of	rhoorhord C	napine DTa fa	>,		
т	Display	devices, Cathou			The Charles	phosphors, C.	\mathbf{K} \mathbf{I} \mathbf{S} \mathbf{I}	201		7
1		isplay, beam pene			, The Shadow	- Mask CRI	, Direc	21		/
	view S	torage Tube, LEI) and	LCD.	Graphics inj	but devices, C	Jraphic	s		
	software	e and standards.		<u> </u>	, · ·,·	• • • • • •	. 1	_		
	Output	primitives, attrib	utes c	or outp	out primitives	, point and in	he style	e,		
TT	color a	ind intensity, Ar	ea II	lling	algorithms, S	Scan line alg	gorithn	1,		-
11	boundar	ry fill & flood	fill a	lgorith	m, Antialias	ing technique	es, Lin	e		7
	drawing	g- various algorith	ims a	nd the	eir compariso	n, circle gene	eration	-		
	Bresenh	nam's midpoint ci	rcle di	awing	algorithm.	D		1		
	Transfo	rmation- Basic	Transi	tormat	ions, Matrix	Representati	on an	d		
	Homog	eneous Coordina	tes, t	ranslat	ion, scaling,	rotation, re	flection	1,		-
111	sheering	g, composite	transf	ormati	on, Windo	w to view	v po	rt		7
	transfor	mation, line clip	ping	algori	thm; Cohen	Sutherland,	polygo	n		
	clipping	g; Sutherland Hod	gman	algori	thm.	() D:	•	1		
	Need 1	for 3-Dimension	al ir	naging	g, technique	s for 3-Din	nesiona	al		
	displayi	ing, 3D transfor	matio	n, pro	ojection and	its types,	Curve	÷-		
IV	paramet	tric and non-	param	etric	functions,	Bezier (B	ernstei	n		7
	Polynor	mals) Curves, (Jubic-	Spline	es, B-Splines	s, Need for	hidde	n		
	surface	removal, Back	face	detec	tion, Z-buff	er method, I	Painter	'S		
	algorith	m				~ .		_		
	Shading	g Algorithms-Ph	ong's	shac	ling model,	Gouraud	shading	ς,		
v	Shadow	s and backgrou	nd, il	lumin	ation, light	sources, illur	ninatio	n		7
	method	s (ambient, diffuse	e refle	ction,	specular refle	ection), Color	model	5:		
properties of light, XYZ, RGB, YIQ and CMY color models.										
Total Hour	s									35
CO-1 : To understand the Graphics systems, its applications, hardware & software requirement										
CO-1 : To understand the Graphics systems, its applications, hardware & software requirement.										
CO-2 : To apply scan conversion algorithms of various graphics output primitives. CO-3 : To understand the basic principles of homogeneous coordinate systems, 2-dimensional & 3-										
dimension	and comput	ter graphics system	ne		nogeneous co	Solumate syste	ems, 2	-uiiil		iai & 3-
CO_{-1}	create co	ometrical transfor	ns. matio	n on 7	-dimensional	& 3_dimansis	nal ob	iecto		
CO-4. 10	annly win	dow into viewpor	mailo t clin	$\frac{110112}{11000}$	loorithms of	a J-unitensit	nte agoi	net o	wind	ow
Text Book	appry will		., enp	ping a	igoriums of a	stapines objec	no agai	not a	winue	. w.
ICAT DUUK										

1. Computer Graphics C Version, Donald Hearn & M. Pauline Baker, Pearson Education, New Delhi.

Reference Books

- 1. James D. Foley, Andries Van Dam, Steven K. Feiner, John F. Hughes, Computer Graphics- Principles and practice, Second Edition in C, Pearson Education.
- 2. OpenGL ES 3.0 Programming Guide 2nd Edition (English, Paperback, Budi Rijanto Purnomo, Dan Ginsburg), PEARSON.
- 3. Rogers, "Procedural elements of Computer Graphics", Tata McGraw Hill.
- 4. Parekh, "Principles if multimedia", Tata McGraw Hill.

List/Links of e-learning resource

• https://nptel.ac.in/courses/106106090

Modes of Evaluation and Rubric

The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end semester practical examination.

CO-PO	Mappi	ng:													
COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	PO ₁₁	PO ₁₂	PSO1	PSO2	
CO-1	1	3		2									1	2	
CO-2	2	2											1	2	
CO-3	2	3	1										2	1	
CO-4	1	2											1	3	
CO-5	3	1		1									2	2	
Recomn	nendatio	on by B	oard of	studie	s on										
Approva	ıl by Ac	ademic	counc	il on											
Compile	d and d	esigned	l by												
Subject	handled	by dep	artmen	nt				Depa	rtment	of CS	& IT				

(An Autonomous Institute Affiliated to RGPV Bhopal)

DEPARTMENT OF CS & IT

Semester/Ye	ear	VII/IV		Prog	gram	B.Tech	ı – Inte	rnet of	f Thin	gs
Subject Category	OC	Subject Code:	loT OC	2074 – 3B	Subject Name	Digita	al Imag	ge Pro	cessin	g
		Maximum M	larks A	llotted			Cont	toot U		Total
	Г	Theory			Practical	Total	Con		Jurs	Credits
ES	MS	Assignment/Q	uiz	ES	LW	Marks	L	Т	Р	
70	20	10		-	-	100	3	0	0	3

Prerequisites:

Knowledge of Computer Programming Language and MATLAB

Course Objective:

- To study the image fundamentals and mathematical transforms necessary for image processing.
- To study the image enhancement techniques
- To study image restoration procedures

• To study the image compression procedures.

UNITs	Descriptions	Hrs.
Ι	Digital Image Fundamentals: A simple image model, Sampling and Quantization. Relationship between pixels, Imaging geometry, Image acquisition systems, Different types of digital images.	7
ΙΙ	Image Transformations Introduction to Fourier transforms, Discrete Fourier transforms, Fast Fourier transform, Walsh transformation, Hadmord transformation, Discrete Cosine Transformation.	7
III	Image Enhancement Filters in spatial and frequency domains, Histogram based processing. Image subtraction, Averaging, Image smoothing, Nedion filtering, Low pass filtering, Image sharpening by High pass filtering.	7
IV	Image Encoding and Segmentation Encoding: Mapping, Quantizer, Coder. Error free compression, Lossy Compression schemes. JPEG Compression standard. Detection of discontinuation by point detection, Line detection, edge detection, Edge linking and boundary detection, Local analysis, Global processing via Hough transforms and graph theoretic techniques.	7
V	Mathematical Morphology Binary, Dilation, crosses, Opening and closing, Simple methods of representation, Signatures, Boundary segments, Skeleton of a region, Polynomial approximation.	7
Total Hour	S	35
Course Out	tcomes:	
CO1: Abil	ity to apply principles and techniques of digital image processing in applic	ations related to
design and	analysis of digital imaging systems.	

CO2: Ability to analyze and implement image processing algorithms to real problems.

CO3: Gaining of hands-on experience in using software tools for processing digital images.

CO4: Interpret image segmentation and representation techniques.

CO5: Apply Mathematical Morphology using Polynomial approximation.

Text Book

1. Rafael C Gonzalez, Richard E Woods 3rd Edition, Digital Image Processing Pearson.

Reference Books

1. Sonka, Digital Image Processing & Computer Vision, Cengage Learning.

2. Jayaraman, Digital Image Processing, TMH.

- 3. Pratt, Digital Image Processing, Wiley India.
- 4. Annadurai, Fundamentals of Digital Image Processing, Pearson Education.

List/Links of e-learning resource

https://nptel.ac.in/courses/117105135

Modes of Evaluation and Rubric

The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end semester practical examination.

С	O-PO N	Iappin	ıg:													
	COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	PO ₁₁	PO ₁₂	PSO1	PSO2	
	CO-1	1	1	1										1	1	
	CO-2	2	2	1	1									2	1	
	CO-3	2	2	1	1									2	1	1
	CO-4	2	2	1	1									2	1	1
	CO-5	1	1	1										1	1	1
R	ecomme	ndatio	n by Bo	oard of	studies	on										
A	pproval	by Aca	demic	council	l on											
Compiled and designed by																
Sı	ubject ha	andled	by depa	artment					Depar	tment of	of CS &	k IT				

(An Autonomous Institute Affiliated to RGPV Bhopal)

DEPARTMENT OF CS & IT

Semester/Ye	ear	VII/IV		Pro	gram	B.Tech	n – Inter	rnet o	f Thin	gs
Subject Category	OC	Subject Code:	IoT OC	2075 - 4A	Subject Name]	Deep L	earniı	ng	2
		Maximum M	larks A	llotted			Cont	act He	ours	Total
EC		heory		FC	Practical T W	Total Monka	т	т	р	Credits
ES 70	20 20	Assignment/Q	ulz	ES			L 3	1	P 0	3
70	20	10		-	_	100	5	U	U	
Prerequisit	06.									
Basic know	vledge o	f computers its co	mnone	ents ar	nd programmi	ng skills				
Course Obi	iective:	<u>r computers, its co</u>	mpon	Jiito ui	ia programmi	ing skills				
• To intr	oduce th	ne fundamentals of	deep 1	learnir	ng and the ma	in research ac	tivities	in th	is fiel	d.
 To lear 	n archit	ectures and optimize	zation	metho	ods for deep n	eural network	trainir	ווו נוו זס	10 1101	
UNITS		coturos una optimi	<u>Eutron</u>	Descrip	otions		uum	- <u>B</u> .	Н	lrs.
	History	v of Deep Lear	nino –	McC	ulloch Pitts	Neuron M	ultilav	-r		
T	Percen	trons (MLPs). Rer	present	ation	Power of ML	Ps. Sigmoid N	Veuron	S.		7
-	Feed F	Forward Neural Net	tworks	Back	c propagation			.,		
	Activa	tion functions	and 1	param	eters: Gradi	ent Descent	(GD),		
	Mome	ntum Based GD,	Nest	erov	Accelerated	GD, Stochas	tic GI),		-
11	Princip	bal Component A	nalysis	and	its interpreta	tions, Singula	ır Valı	ie		1
	Decon	position, Parameter	ers v/s	Hyper	r-parameters.					
	Auto-e	encoders & Regula	arizatio	on: Au	uto encoders	and relation	to PCA	Α,		
	Regula	arization in auto en	ncoder	s, Dei	noising auto o	encoders, Spa	rse au	to		
III	encode	ers, Regularization	n: Bias	s Vari	ance Tradeo	ff, L2 regula	rizatio	n,		7
	Early	stopping, Datase	t aug	menta	tion, Encode	er Decoder	Model	s,		
	Attenti	ion Mechanism, At		n over	images, Batc	n Normalizati	ion.			
	Deep	Learning Mode	ers II	ntroau NINI A	ction to C	LININS, Arch	litectur	e,		
IV	Net V	VGGNet Google	Net	RecNa	applications,	on to RNN	NCI, ZI N Rac	- -		7
1 V	propag	volution through time	ACL,	T V	anishing and	Exploding G	s, Dat radient	S S		/
	Trunca	ated BPTT GRU I	LSTM	s	unishing and	Exploding O	luuioin	5,		
	Deep I	Learning Application	ons Im	age P	rocessing. Na	tural Languag	e			
V	Proces	sing, Speech recog	nition	, Vide	o Analytics.		,-			7
Total Hour	s		,	/	5					35
Course Out	tcomes:									
CO 1: Un	derstand	d the fundamentals	of dee	ep lear	ming and the	main research	activit	ies in	this f	field.
CO 2: Ren	nember a	architectures and o	ptimiz	ation	methods for d	leep neural ne	twork	traini	ng.	
CO 3: Im	plement	, apply and test rel	evant	learnir	ng algorithms	in TensorFlov	w.			

CO 4: Critically evaluate the method's applicability in new contexts and construct new applications. **CO 5**: Able to carry out design and implementation of deep learning models for signal/image

processing application

Text Book

1. Ian Goodfellow, YoshuaBengio, Aaron Courville. Deep Learning, the MIT press, 2016

Reference Books

1. Bengio, Yoshua. " Learning deep architectures for AI." Foundations and trends in Machine Learning 2.1, Now Publishers, 2009

2. Deep Learning, Rajiv Chopra, Khanna Book Publishing, Delhi 2020.

List/Links of e-learning resource

•	https:/	//nptel.	ac.in/c	ourses	/10610	6184								
Modes	of Eval	uation	and Ru	ıbric										
The eva	aluation	modes	consis	t of per	rformar	nce in t	wo mic	l semes	ster Tes	ts, Qui	z/Assigr	ments,	term wo	ork, end
semeste	semester practical examination.													
CO-PO Mapping:														
COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	PO 11	PO 12	PSO1	PSO2
CO-1 1 2 1 1 2														
CO-2	CO-2 1 2 1 1 2													
CO-3	1		3		3		1			1		1	1	1
CO-4	2		1					1						2
CO-5	1	1	1										1	1
Recom	nendati	on by B	oard of	fstudies	s on									
Approval by Academic council on														
Compiled and designed by														
Subject	handled	1 by dep	partmen	nt				Depar	tment o	f CS &	IT			

(An Autonomous Institute Affiliated to RGPV Bhopal)

DEPARTMENT OF CS & IT

Semester/Ye	ear	VII/IV		Pro	gram	B.Tecl	ı – Inte	rnet of	f Thin	gs
Subject	OC	Subject Code:	ІоТ	2075	Subject		Cyber 9	Securi	tv	
Category				<u>– 4B</u>	Name					75 (I
	Т	Naximum N	arks A	liotted	l Practical	Total	Cont	act Ho	ours	Total Credits
ES		Assignment/O	niz	ES	LW	Marks	L	Т	Р	Creuits
70	20	10	uil.	-	-	100	3	0	0	3
	•									
Prerequisit	es:									
^										
Course Obj	jective:									
• The co	urse ain	ns at providing stu	dents	with a	concepts of co	omputer secu	rity, cr	yptog	raphy	, digital
money	, secure	protocols, detection	n and	other	security techn	iques.				
UNITs			Ι)escriț	otions				H	lrs.
	Cyber	Security Conce	pts:]	Essent	ial Terminol	logies: CIA,	Risk	s,		
т	Breach	nes, Threats, Atta	cks, H	Exploi	ts. Informatio	on Gathering	(Soci	al		7
1	Engine	ering, Foot Print	ing &	: Scar	nning). Open	Source/ Fre	ee/ Tri	al		/
	Tools:	nmap, zenmap, Po	rt Sca	nners,	Network scar	nners.				
	Introdu	uction to Cryp	tograp	ohy,	Symmetric	key Crypt	ograph	y,		
	Asym	metric key Cryp	tograp	ohy,	Message Au	thentication,	Digit	al		
	Signat	ures, Applications	of	Crypto	ography. Ove	rview of F	irewall	s-		
II	Types	of Firewalls, U	Jser 1	Manag	gement, VPN	Security,	Securi	ty		7
	Protoc	ols: - security at	the .	Applic	cation Layer-	PGP and S	S/MIM	Ē,		
	Securi	ty at Transport Lay	ver- S	SL an	d TLS, Securi	ty at Networ	k Lave	r-		
	IPSec.	5 1 5	,		,	5	5			
	Introdu	uction to System S	ecurit	y, Ser	ver Security,	OS Security,	Physic	al		
	Securi	ty, Introduction to	Netw	orks,	Network pack	tet Sniffing,	Netwo	rk		
	Design	Simulation. DO	S/ D	DOS	attacks. Ass	et Managem	ent ar	nd		
III	Audits	, Vulnerabilities and	nd Att	tacks.	Intrusion dete	ection and Pr	eventio	on		7
	Techni	iques, Host base	d In	trusio	n prevention	Systems,	Securi	ty		
	Inform	nation Managemen	t, Net	work	Session Analy	ysis, System	Integri	ty		
	Valida	tion.				-	-			
	Interne	et Security, Cloud	Com	puting	g &Security,	Social Netwo	ork sit	es		
	securit	y, Cyber Security	/ Vul	nerabi	lities-Overvie	w, vulnerabi	lities	in		
IV	softwa	re, System admi	nistrat	ion,	Complex Ne	twork Archi	tecture	s,		7
1 V	Open	Access to Or	ganiza	ational	l Data, W	eak Auther	nticatio	n,		/
	Author	rization, Unprotec	ted B	roadb	and communi	ications, Poo	r Cyb	er		
	Securi	ty Awareness					-			
	Securi	ty in Evolving Te	chnolo	ogy: B	Biometrics, M	obile Compu	ting ar	nd		
	Harder	ning on android an	d ios,	IOT (Security, Web	server confi	guratio	on		
V	and Se	ecurity. Introduction	on, Ba	sic se	curity for HT	TP Applicat	ions ar	nd		7
v	Servic	es, Basic Security	for	Web	Services like	SOAP, RE	ST etc	с.,		/
	Identit	y Management a	and V	Neb	Services, Au	thorization	Pattern	s,		
	Securi	ty Considerations,	Challe	enges.						
Total Hour	s									35
Course Out	Course Outcomes:									
CO1: Und	erstand,	appreciate, employ	, desi	gn and	d implement a	ppropriate see	curity t	echno	ologie	s and
policies to	protect of	computers and digi	tal inf	ormati	ion.					

CO2: Identify & Evaluate Information Security threats and vulnerabilities in Information Systems

and apply security measures to real time scenarios.

CO3: Identify common trade-offs and compromises that are made in the design and development process of Information Systems

CO4: Demonstrate the use of standards and cyber laws to enhance information security in the development process and infrastructure protection.

CO5: Design and develop a security architecture for an organization.

Text Book

1. William Stallings, "Cryptography and Network Security", Pearson Education/PHI, 2006. **Reference Books**

- 1. V.K. Jain, "Cryptography and Network Security", Khanna Publishing House.
- 2. Gupta Sarika, "Information and Cyber Security", Khanna Publishing House, Delhi.
- 3. Atul Kahate, "Cryptography and Network Security", McGraw Hill.
- 4. V.K. Pachghare, "Cryptography and Information Security", PHI Learning

List/Links of e-learning resource

https://nptel.ac.in/courses/106106129 •

Modes of Evaluation and Rubric

The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end semester practical examination.

CO-PO Manning

v	0-101	Tappin	' 8•													
	COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	PO ₁₁	PO ₁₂	PSO1	PSO2	
	CO-1	1	3				1							1	2	
	CO-2	1	1	1										1	2	
	CO-3	1	2	1			2		2		1				1	
	CO-4		1	2					1						2	
	CO-5	1	1	1										1	1	
S	ıggestiv	e list o	f exper	riments	5:											
R	ecomme	ndatior	ı by Bo	oard of	studies	on										
A	pproval	by Aca	demic	council	on											
С	Compiled and designed by															
Sı	Subject handled by department Department of CS & IT															

(An Autonomous Institute Affiliated to RGPV Bhopal)

DEPARTMENT OF CS & IT

Semester/Ye	ear	VII/IV	Prog	gram	B.Tech	h – Internet of Things					
Subject Category	DLC	Subject Code:	IoT 2076	Subject Name	And	roid Pr	ogran	nming			
		Maximum M	arks Allotted			Cont	oot U		Total		
	Т	heory		Total	Com	act H	burs	Credits			
ES	MS	Assignment/Qu	uiz ES	LW	Marks	L	Т	Р			
-	-	-	30	20	50	0	0	2	1		

Prerequisites:

Building an Android app comes down to two major skills/languages: Java and Android.

- Course Objective:
- Explain different techniques for developing applications for mobile devices.
- Understand the Android OS architecture.
- Understand the operation of the application, application lifecycle, configuration files, intents, and activities, services & Receivers.
- Install and use appropriate tools for Android development, including IDE, device emulator, and profiling tools.

UNITs	Descriptions	Hrs.
Ι	Introduction to Android, A little Background about mobile technologies , Overview of Android - An Open Platform for Mobile development, Open Handset Alliance Developing for Android: First Android Application, setup Android Development Environment. Android development Framework - Android-SDK, Eclipse Emulators, Creating & setting up custom Android emulator Android Project Framework.	7
П	Android Activities and UI Design, Understanding Intent, Activity, Activity Lifecycle and Manifest, Creating Application and new Activities, Expressions and Flow control, Android Manifest Simple UI - Layouts and Layout properties, Fundamental Android UI Design, introducing Layouts, Creating new Layouts, Drawable Resources, Resolution and density independence (px ,dip, dp, sip, sp) XML Introduction to GUI objects viz. Push Button, Text / Labels, Edit Text, Toggle Button, Weight Sum Padding, Layout Weight.	7
III	Advanced UI Programming , Event driven Programming in Android(Text Edit, Button clicked etc.),Creating a splash screen, Event driven Programming in Android, Android Activity Lifecycle, Creating threads for gaming requirement, Understanding the Exception handler, Toast, Menu, Dialog, List and Adapters, Custom Vs. System Menus Creating and Using Handset menu Button (Hardware), Android Themes, Dialog, create an Alter Dialog, Toast in Android, List & Adapters, Manifest.xml File Update.	7
IV	Multimedia Programming using Android, Multimedia audio formats - Creating and Playing, Multimedia audio formats - Kill / Releasing (Memory Management),e audio in any application video playback with an event, Database - SQLite, SQLiteOpenHelper and creating a database, Opening and closing a database, Working with cursors Inserts, updates, and deletes, Location Based Services and Google Maps, Using Location Based Services, Working with Google Maps.	7

V	Notifications Notification Manager, Pending Intent Notifications (Show and Cancel), custom made Web browser, WebView object in XML, Methods for associated with 'Go', 'Back', 'Forward' etc. Android Development using other Tools, Other ways to Develop Android Applications, Graphics / Game development using, Installation of .apk, install .apk into your Android Mobile.	7					
Total Hour	35						
Course Out	tcomes:						
CO1: Ability to identify key challenges in managing information and analyze different storage							

networking technologies and virtualization. **CO2**: Ability to understand components and the implementation of NAS.

CO3: To understand CAS architecture and types of archives and forms of virtualization.

CO4: To monitor the storage infrastructure and management activities.

CO5: Ability to design and develop an application using Database.

Text Book & Reference Books-

1. Android Developer Tools Essentials by Mike Wolfson - O'Reilly Media Publication

1. Learn Java for Android Development, 2nd Edition - Jeff Friesen-Apress Publications

2. OpenGL ES 2 for Android - Kevin Brothaler - The Pragmatic Programmers.

List/Links of e-learning resource

https://onlinecourses.swayam2.ac.in/nou21_ge41/preview

Modes of Evaluation and Rubric

The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end semester practical examination.

CO-PO Mapping:

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	PO 11	PO 12	PSO1	PSO2
CO-1	1	1				1							1	2
CO-2	1	1	1				1						1	2
CO-3	1	1	1							1				1
CO-4		2		1	1			1						1
CO-5	1	1	1										1	1

Suggestive list of experiments:

- 1. Introduction to Android Operating System
- 2. Program for First Android Application.
- 3. Program for building a simple user interface using a XML for UI layout.
- 4. Program for developing an Android Application using a linear layout.
- 5. Program for developing an Android Application using a Relative layout.
- 6. Program for developing an Android Application using a Table layout.
- 7. Program for developing an Android Application using a Absolute layout.
- 8. Program for developing an Android Application using a Frame layout.
- 9. Developing an android application using Relative layout to display Date and time.

10. Study of android lifecycle and demonstration of it.

- 11. Study of intents and types of intents
- 12. Study of list views and adapters
- 13. Study of dialog interfaces in android
- 14. Study of Sensors in android
- 15. Study of Services in android
- 16. Study of touch in android

- Approval by Academic council on
- Compiled and designed by

Subject handled by department

Department of CS & IT

NON TECHNOLOGICA		SAMRAT	ASE	IOK	TECHNO	LOGICAI	L INS	TIT	UT	£		
GTA	(Engineering College). VIDISHA M.P.											
Ward and a service		(An A	uton	omous	Institute Affil	, liated to RGP	V Bho	pal)				
UIDISHA M.P.		DEPARTMENT OF CS & IT										
Semester/Year	VIII/IV Program B.Tech – Internet									ngs		
Subject Category	DLC	DLC Subject Code: IoT 2078 Subject Minor Project F								Prelim		
	T	Maximum Mar	ks All	otted			Cont	act H	Total			
ES	MS	Assignment/Q	uiz	ES	LW	Total Marks	L	Т	Р	Credits		
				100	50	150	-	-	4	2		
Droroquisitos												
Trerequisites.												
Course Object	ive:											
UNITS			D	escrin	tions				F	Irs.		
	a) Ea	ch defined proj	ect n	eeds	to be from	n Industry/R	lesearc	ch	-			
	organiz	zation/Govt.organ	izatio	n/soci	o-technical is	sues.						
	b) Proj	ject identification	shoul	ld be l	based on Ana E Somostor (alysis carried	l out b)y				
David	before	starting of the 7th	Seme	ester.				uı				
Procedure:	c) Prob	ry	40									
	student	. ~										
	of the	ıg										
	Facilit	D-										
	ordinat	tor/Faculty /Depar	tment	Head	for skillful A	Analysis .	. 1					
	1. The need to	project work will project work proj	be in ect re	-house lated	to any doma	oject, where s	student					
	educati	ion, legal, m	anufa	cturin	g, design,	pharmace	eutical,	,				
	Ecomn											
	2. Stuc	L										
	3. Afte	t										
	their p	ι										
Guidalinas	4 stude											
Ouldelines.	weeks)										
	follow											
	6. Eacl	f										
	the Fac	culty from the Col	lege.	In cas f Inte	e any problemer Departme	m/other issue	work	÷				
	discove	ery/Practical Train	ning,	it sho	uld be imme	ediately brou	ight to)				
	the not	ice of the major p	roject	in cha	arge coordina	tors/Faculty.	-					
	7. The	students are requi	red to	subm	it Project syn	nopsis Pre-re	port to) -				
	Colleg	e during Eighth w	eek o	f the se	emester	s of guide li						
Total Hours		×								40		

On successful completion of the project student should be able to:

CO1: Identify the problem domain correctly and to represent problem using mathematical structures and logics.

CO2: Analyze possible solution strategies and investigate problem domain and design feasible solutions for it.

CO3: Make use of cutting edge tools and technologies to derive solutions for the problems and carried a detailed studied about the feasibility and societal impact of solutions

CO4: Acknowledges the previous work and support required in the solution. Justify the role of individual in project work. Demonstrate leadership skills in team work.

CO5: Present and communicate the importance of solutions of problem domain. Conduct and accomplish all the subtasks for project completion in time and cost effective manner and conclude the project work with possible scopes.

Modes of Evaluation and Rubric

The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end semester practical examination.

CO-PO Mapping:

	co-romaphing.													
COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	PO ₁₁	PO 12	PSO1	PSO2
CO-1	3	3	2										2	2
CO-2	2			2		1	2			1			2	
CO-3			3		3	2	3						2	2
CO-4									3				1	
CO-5					2					3	3	3		2
Recommendation by Board of studies on														
Approval by Academic council on														
Compiled and designed by														
Subjec	t handled	l by dep	oartmen	ıt				Department of CS & IT						