

3

CO2

2

2

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

C	wastan/V		III/I	r	г					D Taab		
Sei	nester/ Y	ear	111/1	L	ł	rogram				B. Iech.		
Subject Category		DC	Subje Code	ct x:	ME-301	Sul Na	bject ume:	Fund	amental	ls of Ther	modyna	mics
			M	laximum	Marks A	llotted				a		
			Theory			Practic	cal			Contact H	ours	Total
End Sem	Mid	Sem A	Assignment	t Qui	iz S	End Sem	Lab- Work	Total Marks	L	L T P		Credits
60	2	0	10	10)	-	-	100	3	1	0	4
Course C . The obj the prope by the su	bjective ective of erties of bstances	f this subj substance	ect is topr s for their	ovidesu use in d	nderstand	ling of bang the ch	asics of the anges of	nermal en properties	gineerin s in phy	g and the	e relation cesses pe	Iships of erformed
Course O	utcomes	:										
After co 1. 2. 3. 4. 5.	mpletio Underst Apply k Carnot (Analyse Evaluat Analyse	n of the c and the b nowledg Cycle thebeha e the pha the therm	course, stu pasic conc e to ident viour of a se transfo nodynami	adents w rept and ify appl in ideal prmation ics relat	vould be l fundar lications gas and n and pro ions	e able to nental la 5 on Heat real gas operties o	- ws of the Engine: ofpure su	ermodyna s, Refrige ıbstances	amics erator a s.	nd Heat	Pump b	ased on
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO9 PO10 PO11 P		
CO1	3					1						1

1

CO3	3	3	3	2								
CO4	3	3	3	3		1						
CO5	3	2				1	2					1
Contents	5:	<u> </u>	<u> </u>	<u> </u>		I	L	I	<u> </u>	<u> </u>		
UNITs					Descrip	otions					Hrs.	CO's
Ι	Basic Concepts: Thermodynamic, Property, Equilibrium, State Process, Cycle, Zeroth Law of thermodynamics, statement and significance, Heat and work transfer, First law of thermodynamics statement of first law of thermodynamics, first law applied to closed system, first law applied to a closed system undergoing a cycle processes analysis of closed system, flow process, flow energy, steady flow process, relations for flow processes, and limitations of first law of thermodynamics.											
Ш	Second law of thermodynamics: Heat engine, heat reservoir, refrigerator, heat pump, COP, EPR, Available energy, Carnot's theorem, Carnot's cycle, efficiency of Carnot's cycle, statement of second law reversible and irreversible processes, consequence of second law, Entropy: Entropy change for ideal gas, T-S diagrams, Availability and Irreversibility											
III	Conc Devia const comp surfac mixtu energ mixtu	ept of ar ation wir ants, lim oressibilit ce of a ure of id gy, entha ures.	n ideal g th ideal itations ty fact real gase lpy and	gas: Gas gas, V of the or, ger s, Non- es, prop l specif	s laws, Vander-vequation neralize reactive erties c ic heat	Avogad wall's e n. The la d comp e gas n of mixtu of gas	ro's hy equation aw of c pressibi nixture, are of id mixture	pothesis n, evalua orrespor lity ch PVT r deal gas es, entha	, Real ation c nding s art, P elation es, int alpy of	Gas, of its states -V-T ship, ernal f gas	8	3
IV	Pure prope proce and n	substance erties of esses of v nollier ch	ces: Pha f stean apor manart.	use, Pha n, PV7 easurem	se- trai surfa sent of c	nsforma ace, HS dryness	tions, f S,TS,PV fraction	ormation /,PH,TV , use of	n of st 7 diag steam	eam, gram, table	8	4
V	Thermodynamics Relations: Gibb's function, Helmholtz function Maxwell relations, and their applications. TdS equations. Relationshi between specific heats, Clapeyron equations, Joule-Thomso coefficient, Coefficient of volume expansion, adiabatic and isotherma compressibility.										8	5
Guest Lectures (if any)											40	
Suggesti	ve list of	experime	nts:									

Text Books-

- 1. R. K. Rajput, Engineering Thermodynamics, LP
- 2. Sonntag, Fundamentals of Thermodynamics, Wiley
- 3. Moran, Shapiro, Principles of Engineering Thermodynamics, Wiley

Reference Books-

- 1. P. K. Nag; Engineering Thermodynamics, McGraw Hills
- 2. CengelY;Thermodynamics: An Engineering Approach; McGraw Hills
- 3. Arora CP Thermodynamics, McGraw Hills

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. Subjects where laboratory work is prescribed, the practical marks are 50, out of which 30 marks will be awarded for viva voce and 20 marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1.Dr.Mangal Singh Lodhi
	Name 2:Dr G Deshmukh
Checked and approved by	Name 1. Dr Sanjay Katarey

	SAMRAT ASHOK TECHNOLOGICAL INSTITUTE												
STATISTICS TECHNOLOGICAL	A DE			(E	ngineerin	g Colleg	e), VIDIS	HA M	.P.				
VIDISHA M.P.	A Start			(An A	Autonomous	Institute A	ffiliated to R	GPV Bł	nopal)				
After saig shreet.				Mee	chanical	Engine	ering De	partn	nent				
Semes	ster/Year	B.Tech.											
Subject Categor y	DC	DC Subject Code: ME-302 Subject Name: Stren							ngth & Mechanics of Material				
Maximum Marks Allotted Contact Hours													
	Theo	Con		Juis	Total Credit								
End Sem	Mid- Sem	Marks	L	Т	Р	S							
60	3	0	2	4									
Prerequisite	es:(Only for o	open elective	s)										
Course Ob	jective:												
To give a problems	n ability to	o apply the	knowl	edge of streng	gth of ma	terials on	engineerin	g appl	ication	ns and	l design		
Course Ou	tcomes:												
After com	pletion of th	e course, st	udents v	vould be able to	0 -								
1.Ider	tity the the	eory of elas	sticity in	ncluding strain	n/displace	ment and	Hooke's la	aw rela	tionsh	ip			
2.Con	npute solid	mechanic	s proble	ms using clas	sical meth	nods and e	energy met	hods.					
3.Dete	ecttheories	of elastic t	failures	&analyze the	stress and	d strain th	rough Moł	nr's circ	ele.				
4.Dete	erminethe s	stresses and	d deflec	tions of beam	is under u	nsymmeti	rical loadin	g.					
5.Ana	lyze torsio	n problem	s in bars	and thin wal	led memb	ers.							

	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1					PO10	PO11	PO12			
CO1	3	2	1	1								
CO2	3	2	3	2								
CO3	3	2	2	2								
CO4	3	2	2	2								
CO5	3	2	2	2								
Conter	nts:					<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	
UNI	ITs				Des	criptions					Hrs.	CO's
I	· .	Stress an relationsh in tension ratio, elas anisotrop Tension, bars, equ energy du	s- strain naterials oisson's naterial, omposite n, Strain	8	CO1							
Ι	I	Members bending loading a and transv angle sect	s Subject moment nd suppo verse she tions etc.	c ted to and she rt conditi ar stress Strain er	Flexura ar force ons on b distributi aergy due	l Loads diagram eams, Be on in circ to bendi	: Theo s for d ending s cular, ho ng.	ry of s lifferent tresses, s ollow cir	imple types of section for the	bending, of static modulus Box, T,	8	CO2
п	I	Principal axial, ben concept o circle of su Theories significant	Planes, ading and of equiva tress and of Elastic ce and co	Stresses torsion lent ben strain. c Failur mparisor	and Str al loads, ding and es: The r n, applica	rains: M maximu l equival necessity ttions.	lembers um norr ent twi for a th	subjector mal and sting mo neory, di	ed to co shear oments, fferent	ombined stresses, Mohr's theories,	8	CO3
IV	7	 Torsion: Torsional shear stress in solid, hollow and stepped circular shafts angular deflection and power transmission capacity. Strain energy due to torsional loads, Stability of Equilibrium: Instability and elastic stability, long and shor columns, ideal strut, Euler's formula for crippling load for columns o different ends, concept of equivalent length, eccentric loading, Ranking formulae and other empirical relations. 									8	CO4

	Transverse Deflection of Beams: Relation between deflection, bending moment, shear force and load, transverse deflection of beams and shaft under												
V	static loading, area moment method, direct integration method.	8	CO5										
	Thin-walled Pressure Vessels: Stresses in cylindrical and spherical vessels												
Guest	Lectures (if any)	<u> </u>											
Total	Hours	40											
Sugge	tive list of experiments:												
1.	To find Modulus of Elasticity 'E' of Mild Steel and Wood by Deflection method.												
2.	To find Modulus of Rigidity 'N' of Mild Steel by Barton's vertical torsion apparatus	•											
3.	To find Modulus of Rigidity 'N' of spring material by Spring test apparatus.												
4.	To verify Shear Force at a given section of a Simply Supported Beam.												
5.	To verify Bending Moment at a given section of a Simply Supported Beam.												
6.	To verify Maxwell's Theorem of Reciprocal Deflection.												
7.	To perform Tensile Test on M.S. and C.I. specimen and draw stress strain curve.												
8.	To perform Compression test on Teak and Jungle wood and R.C.C. C.I. cubes an	d com	pare their										
9	To determine Ultimate Shear Strength of M.S., C.L. and Brass												
10	To determine Modulus of Rupture of Teak and Sal wood beam by FlexureTest												
Tout D													
Text D													
1. 2.	R. K.Bansal, "A Textbook of Strength of Materials Laxmi Publications. Dr. Sadhu Singh A Textbook of Strength of Materials. Khanna Publications												
Refere	nce Books-												
1	Timoshenko S.P. and Gere I.M. "Mechanics of Materials" 2nd Ed. CBS Publishers												
2.	Crandall, S.H., Dahl, N.C., and Lardner, T.J., "An Introduction to the Mechanics of Solids", Tata M	cGraw-F	611										
3. 4.	Pytel and Kiusalaas, "Mechanics of Materials" Cengage Learning Punmia, Jain and Jain, "Mechanics of Materials", Laxmi Publication												
5.	Popov, E.P., Nagarajan, S., and Lu, Z. A., "Mechanics of Materials", 2ndEd., Prentice-Hall of India												
Modes	of Evaluation and Rubric												
There	will be continuous evaluation for during the semester for 40 sessional marks and e	50 sem	ester End										
term	Marks. The practical marks are 50, out of which 30 marks will be awarded for vi	va voc	e and 20										

marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester –

End examination as per the norms of AICTE.										
Recommendation by Board of studies on	Date:									
Approval by Academic council on	Date:									
Compiled and designed by	Name 1. Dr.GauravBajpai									
Checked and approved by	Name 1.Dr Pradeep Singh									

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

Semeste	er/Year		III /	' II	Program						B.Te	ch.			
Sub Cate	ject gory	DC	Subj Coo	ject le:	ME-303	Sub	ject Na	ame:		Machi	ine Drawi	ng and	Desi	gn	
			Ma	ximum	Marks Allo	tted					Conta	ct Hou	rs		
		Theory				Prac	tical			Total					
End Sem	Mid Sen	Ass	ignment	Quiz	End S	em V	Lab- Vork	Quiz	Z	Marks L T			Р	s	
60	20		10	10	30		10	10		150	3	0	2	4	
	I	I		I	1	I			1		1 1		1	<u>I</u>	
Prerequ	uisites:(C	Only for o	pen elect	tives)											
Course	e Object	ive:													
Objecti design.	Objective of this course is to give students basic understanding and conceptual knowledge of machine drawing and design.														
Course	e Outcor	nes:													
After o	complet	ion of th	e course	e, stude	nts would	be abl	e to -								
1.	Illustr	ate vario	ous desig	gn cons	ideration	for ma	chine	compo	onent	design					
2.	Judge Desig	failure i n variou	nodes a	nd com	pute facto ed to stati	or of sa	fety diffe	ent w	orkin	g condit	ions				
4.	Analy	se suitabil	ity of vario	ous joints		C 1000 III	uniter	ent w	OIKIII	5 condit	10115				
5.	under	stand the	concep	t of ge	ometric m	odeling	3								
		1		I	1					1	T	1			
	PO1	PO2	PO3	PO4	PO5	PO6	PC	07 F	PO8	PO9	PO10	PO	11	PO12	
CO1	3	2	2												
CO2	3	2	3	1											
CO3	3	3	3	1											

CO4	2	2	3	1										
CO5	2	3	2	1	2									
Conten	nts:	1												
UNIT	s				Des	scription	S				Hrs.	CO's		
I	Ba con ecc fac Su	sic Desi nsiderati onomics etors for rface Fir	gn conc ons (st and saf steady a nish, lim	cepts, de rengths cety): de and vari its, fits	sign pro manufa sign for able loa and tole	ocess, s acturing recycle ds, imp rance.	tages/ph , maint e and re act and	nases in tenance, use, De fatigue	design, enviro sign and conside	design onment, l safety rations,	8	CO1 & CO2		
Π	Th De and and in	Desirate r Inisit, Initis, Initis, Initia, Initis, Initia, Initis, Initia, Ini												
III	We De Lo	elded Joi sign of ' ads, Init	ints: Re Welded ial Stres	presenta Joints for s, Exerc	tion of or Statio ises Eco	welds, s c Loads centric I	strength , Streng Loading	of Wel ths of V of weld	ded Steve Velds at led Joint	el Joints, Varying s.	8	CO3 & CO4		
IV	De	sign of (pling	8	CO3 & CO4									
V	Ba CA Ge	sic fund D data ometric cametric	amental exchang Modeli represer	ls of CA ge, Grap ng. Typ ntation v	AD and ohics states of m wire frame	Applicandards, athema ne mod	ation of modes tical rep eling	compu of grap presenta	ter for hics op tion of	design, eration, curves,	8	CO5		
Guest	Lectur	es (if an	y)											
Total H	Iours										40			
Sugges	tive list	of exper	iments:											
1	Prena	re Ortho	graphic	views of	given c	biect								
2.	Prepa	re Isome	etric viev	v of give	en object	t								
3.	Conv	ert isome	etric viev	w in orth	ographi	c views	and vice	e versa						
4.	CAD	initial se	etting co	mmands	-Snap, g	grid, Ort	ho, Osna	ap. Limi	ts. Units	, Object tr	acking.	Opening,		
	savin	g and clo	osing a n	ew and e	existing	drawing	/templa	te						
5.	Identi	fy vario												
6.	Prepa	re 2D C.	AD draw	ving of g	iven obj	ject								
7.	Identi	fy variou	us tools/	comman	ds for s	olid moo	lelling							
8.	Prepa	re 3D pa	rts of fla	ange cou	pling									
9.	Prepa	repare assembly of flange coupling												

- 10. Prepare assembly of cotter joint
- 11. Prepare assembly of knuckle joint

Text Books-

- 1. Design of machine elements by V B. Bhandari Tata McGraw-Hill Education
- 2. Mechanical Engineering Design by Joseph Edward'Shigley, McGraw-Hill
- 3. Machine Design by Robqrt. L., Norton
- 4. Design of Machine Elements: Volurrte, I by T. KrishñaRao, IK International
- 5. Machine Drawing by N. D. Bhatt.
- 6. CAD/CAM: Computer-Aided Design and ManufacturingGrooverPearson Education India

Reference Books-

- 1. Mechanical Design of Machine Elements and Machines by Jack A.Collins, Henry Busby, George Staab, Wiley
- 2. Machine Design by P.C. Sharma and D. K. Agarwal, S.K.Kataria& Sons.
- 3. Principles of Computer Graphics William M Neumann and Robert F.Sproul McGraw Hill Book Co. Singapore

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. The practical marks are 50, out of which 30 marks will be awarded for viva voce and 20 marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1. Dr. Chandra Pal Singh
Checked and approved by	Name 1. Prof Sandeep Jain

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

Se	Semester/Year III / II				Program				B.Tech.							
Subject Categor	y y	DC	Subj Coc	ect le:	ME-304	Su	ıbject Na	me:		Μ	aterial	s Scien	ice			
			Ma	ximum Ma	arks Allott	ted					Com	o of Hoy				
		Theor	у			Pr	actical		1	Total	To					
End Ser	n Mic	-Sem	Assignment	Quiz	End S	Sem	Lab- Work	Quiz	z N	Iarks	L	Т	Р	Credits		
60		20	10	10	30)	10	10		150	3	0	2	4		
														I		
Prerequi	sites:(On	ly for op	en electives	;)												
Course	Course Objective:															
To pro-	To provide an ability to apply the knowledge and distinguish between a variety of materials based on															
their str	ructure	and pro	perties in	enginee	ering app	olicati	ons									
Course	Outcome	es:														
After co	ompletio	n of the	course, stu	idents wo	ould be a	ble to	-									
1.	Identify	Micro s	tructural a	rrangeme	ents, phas	ses, pr	operties	s and c	lefects o	of engin	eering r	nateria	ls			
2.	Infer the	e Phase	Diagram o	of Materia	als											
3. 4	Compai Evaluat	evariou eDestruc	s heat treat	tment pro n-destruct	ocesses.	o meth	ods									
5.	Analyze	e various	properties	of Polym	ers & cei	ramics	s materi	al								
	PO1	PO2	PO3	PO4	PO5	РО	6 P	PO7	PO8	PO9	PO1) P	D11	PO12		
CO1	3	1	1	1												
CO2	3	3	1	1												
CO3	3	2	2	2												

CO4	3	2	2	2								
CO5	3	2	1	1								
Contents	:		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	
UNITs					Desc	riptions					Hrs.	CO's
Ι	Imposed on materials, classification of materials, Engineering requirements of materials Solidification of metals, Crystallization, Crystal and amorphous, different types of bonds in different metals, Crystallography, Different mechanical properties of metals and other engineering materials like strength, hardness, elasticity, plasticity, Malleability, Ductility, Creep, Fatigue etc. Point and line defects in crystal, their relation to mechanical properties Crystallographic directions and planes, deformation of metal by slip and twinning Strengthening mechanism in metals, Hall-Petch effect. Stability and metastability of metals, Cooling curves, Isomorphous, Utectic, Eutectoid										8	CO1
II	Stability and metastability of metals, Cooling curves, Isomorphous, Utectic, Eutectoid Eutectoid solid solution, Peritectic and other phase diagrams, Alloying , Characteristics of alloying elements, Iron-Carbon phase diagram, T-T-T diagrams, Types of Cast Iron. Type of Stainless Steels, Elastic, inelastic and Viscoelastic behaviour											CO2
III	Heat vario Anne Auste Borid	treatment us metals aling, no enite, Tro ling, Nitr	t of metals, s, Bulk heat ormalizing, postite, Bain iding, Flame	Based on treatmer Spherodi nite,Hard hardenir	phase dia ats, surfact sing, Pha and soft ag, Ion in	agram and ce heat tre ase Transt t Martensi pplantation	T-T-T-Dia atments, C formations te etc. Las , etc. Heat	gram the Case carb like Pe ser harde treatmen	e heat tre urizing, arlite, C ening, C t cycles	atment of Types of ementite, yaniding,	8	CO3
IV	Destr bend Fract Copp alloys	uctive an test, Diff ure analy er and it' s.	id non-destr ferent types rsis, NDT M rs alloys, Ma	uctive tes of Hardr lethods. I inganese	ting methes tess tests Different and it's a	hods, Tens , Impact te properties lloys, Chro	ile test, Co ests, Fatigu of Steels, omium and	ompressio e tests, I Aluminu it's allo	on test, s Hardenab Im and it ys, Nicke	hear test, bility test, c's alloys, el and it's	8	CO4
V	Non-Metallic Materials- Polymers – types of polymer, commodity and engineerin polymers -Properties and applications, Composites Materials, Solid solutions Substitutional and interstitial. Ferrous and Non Ferrous Metals- Effect of alloying addition on steel (Mn, Si, Cr, Mo, V, Ti & W) - stainless and tool steels – HSLA steel.										8	CO5
Total Hours											10	
											40	
Suggestiv	ve list of											

Text Books-

- 1. Material Science and Engineering An Introduction, William D.Callister, John Wiley and Sons, 2003
- 2. Material Science, Raghvan V., Prentice Hall India, 2012

Reference Books-

- 1. Principles of Material Science and Engineering, William F.Smith, Tata McGraw-Hill Publications.
- 2. Engineering Physical Metallurgy, Lakhtin Y., Mir Publisher.
- 3. Introduction to Engineering materials Tata McGraw-Hill Publications.
- 4. Engineering materials properties and selection Budinski and Budinski, PHI

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. The practical marks are 50, out of which 30 marks will be awarded for viva voce and 20 marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1. Dr.GauravBajpai
Checked and approved by	Name 1.Dr PankajAgrawal