

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

							[
Se	Semester/Year IV/II Program B.Tech.										
Subject Category	, DC	Subject Code:	ME-40	02 S	ubject N	ame:	Applied Thermodynamics				
		Maximum	Marks Al	lotted				0			Total
	Theo	ry			Practical		Total	Contact Hours Cre			Credits
End Sem	Mid-Sem	Assignment	Quiz	End Sem	Lab- Work	Quiz	Marks	L	Т	Р	
60	20	10	10	30	10	10	150	3	0	2	4
Course (This cou steam ge air comp	Dbjective: rse provides a s nerators, the ana ressors, Steam tu Dutcomes:	imple understa lysis of vapou irbines for pow	anding of r power c ver genera	the bas cycle, Ga tion and	ic comp as dynam l conden:	onents on ics and sers.	of steam po flow throug	ower pla gh stean	nt. The n nozzl	e course es, Reci	e contains procating
course (
After co 1. 2. 3. 4. 5.	 After completion of the course, students would be able to - Understand the Steam generator, its performance parameter and boiler code Analyze the Vapour power Cycles Evaluate the Mach Numberin Gas dynamics Evaluate performance parameter of Reciprocating Compressor Understand the working of Steam Turbine and Condensers 										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1			1	1					1
CO2	3	3	1	1	1		1					1

CO3	3	2	1	2		1						1
	2	3	3	3	2			1				1
CO4	2	5	5	5	2			1				1
CO5	2	3	1	2	1	1	2	1				1
Contents	s:											
UNITS					Descri	ptions					Hrs.	CO's
Ι	Ste pre gen con bo	eam essure nerator mbusti iler dra	generato boilers- rs, perfor on in bo aught, ov	ors:Clas Lamont mance ilers, suj erview o	sification Benso and ratin per critic of boiler	n, con on, Lo ng of l cal boi codes.	nvention beffler boilers, l lers, fue	al boil and Ve heat bal l and as	ers, 1 lox s ance s h hand	nigh- team heet, ling,	8	1
п	Ph Ra suj mo Ide op cyo eff	ase C nkine perheat odified eal and en and cle, sup riciency	Change C cycle, t on en Rankine actual re actual re d closed percritica y calcula	Cycles: effect of d mois e cycle, egenerat type of al pressu tions.	Vapor of boile ture an reheat of ive cycle feed w re and b	Carnot or and d effi cycle, e with vater h inary-v	t cycle conder ciency perfect single ar neaters, vapor cy	and its nser pro of rank regenera nd multij regenera rcle, wor	limita essure ting c ative c ple hea ative-re k done	tion, and ycle, ycle, iters, eheat e and	8	2
III	Ga con ide rat pre dif con flo	Gas dynamics:Speed of sound, in a fluid Mach number, Mach cone, stagnation properties, one-dimensional isentropic flow of ideal gases through variable area duct-Mach number variation, area ratio as a function of Mach number, mass flow rate and critical pressure ratio, velocity coefficient, coefficient of discharge, diffusers, normal shock, Steam nozzles:steam flow through nozzles, condition for maximum discharge, effect of friction, super-saturated3									3	
IV	Ai for eff ise cor	r com singl fect of entropio mpress	pressors le stage clearanc c & isot sion, inte	Workin compre ce, volu hermal r-cooling	g of reci ession, c metric e and me g, condit	procat lifferen fficien echanic ion for	ing com nt comp cy real cal effic minimu	pressor, pression indicato iency, 1 1m work	work i proce or diag nulti s done.	nput sses, ram, stage	8	4
V Guest Le	Stea turb turb Stea and perf	Steam Turbine: Compounding of steam turbines, Impulse steam turbines, Impulse-Reaction steam turbines, Energy losses in steam turbines, 8 5 Steam condensers:Introduction, types of condensers, back pressure and its effect on plant performance, air leakage and its effect on performance of condensers. 8 5 ures (if any) 0 0 0 0									5	
Total Us	Hours											
Suggesti	ve list o	f experi	iments:									

- 1. Study of High Pressure Benson Boiler
- 2. Study of High Pressure Loeffler Boiler
- 3. Study of Convergent and Divergent Steam Nozzles
- 4. Performance Analysis of Air Blower
- 5. Performance Analysis of Two Stage Reciprocating Air Compressor
- 6. Study of different types of Steam Condensers
- 7. Performance Analysis of Steam Power Generation (UNI-STA Test Rig)

Text Books-

- 1. Balachandran P; Gas Dynamics for Engineers; PHI Learning
- 2. Yahya SM; Fundamentals of Compressible flow; New Age
- 3. R. Yadav, Steam and Gas Turbines

Reference Books-

- 1. P. K. Nag; Basic and applied Thermodynamics; TMH
- 2. R.Yadav Thermal Engineering,
- 3. Sadhu Singh, ThermalEngineering, Pearson
- 4. Mahesh M Rathore, Thermal Engineering, TMH

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. The practical marks are 50, out of which 30 marks will be awarded for viva voce and 20 marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1.Dr.Mangal Singh Lodhi
Checked and approved by	Name 1.Dr Sanjay Katarey

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

Sei	mester/Y	'ear	IV	/ / II		Pro	B.Tech.						
Subject Categor	t y	DC	Subjec	ct Code:	ME·	ME-403 Subject Name: T						chine-	I
			M	Maximum Marks Allotted									
		Theor	y]	Practical		Tota	1		Total Credits	
End Sem	Mid-	Sem	Assignme	ent Qu	iz En	d Sem	Lab- Work	Quiz	Mark	ts L	Т	Р	Cicuits
60	20	0	10	10)	30	10	10	150	3	0	2	4
	1										1		L
Prerequ	isites:(C	Only for c	open elect	ives)									
Course	Object	ive:											
This co compon	ourse is nents.	focused	on the s	study of	different	t mechar	nisms and	d relative	e motion	between	n num	erous	machine
Course	Outcor	nes:											
After c	ompleti	ion of th	e course	, studen	ts would	l be able	e to -						
1. 2. 3. 4. 5.	Interp Comp Analy Illustr Analy	ret conc ute velo se Gear ate Cam se stabil	epts of li city and Mechan & follov ity0ffou	ts of link, mechanisms, y and acceleration of a point or a link in Mechanism echanism z follower mechanisms voffourwheelers,Twowheelers,ships and planeundertheactionofgyroscopiceffect									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	D11	PO12
CO1	3	2	2	2									
CO2	3	3	2	3									
CO3	3	2	3	3									
After c 1. 2. 3. 4. 5. CO1 CO2 CO3	PO1 3 3	ion of th ret conc ute velo se Gear ate Cam se stabil PO2 2 3 2	e course epts of li city and Mechan & follow ityOffour PO3 2 2 3	, student ink, mec accelera ism wer mec rwheeler PO4 2 3 3 3	ts would hanisms ation of a hanisms rs,Twow PO5	l be able s, a point c s vheelers PO6	e to - or a link ,ships ar PO7	in Mech nd planet PO8	anism underthe PO9	actiono PO10	fgyros P(scopic	effe P

CO4	2	3	3	3								
CO5	2	3 3 2										
Conter	nts:		1	I	<u>. </u>	<u> </u>	1	<u>. </u>	1	<u> </u>		
UNI	Ts				D	escriptio	ons				Hrs.	CO's
Ι		BASICS kinemat Kutzbac Kinemat Limit po Descript mechani mechani	S OF M ic conce hcriterie tic inve ositions tion of sms, S sms.	IECHA epts and on,Grue rsions o — Mea Some Straight	NISMS 1 defini ebler's of four- chanica comr line g	:Classif tions - criteri -bar ch l advan non m generato	Fication Degree on — ain and tage — nechanis ors,Univ	of mecl of free Gras slider Transr sms — versal	hanisms dom,M hof's crank nission – Quio Joint –	s — Basi obility — Law — chains — Angle — ck retur — rocke	c 8 n r	CO1
П		KINEM velocity Graphica analysis mechani Accelera	and al methousing i asms – ation.	SOF 1 accelera od— V nstantan – Coir	LINKA ation a elocity neous c ncident	GE M analysis and acc enters - points	ECHA of s celeratio kines — kines	NISMS imple on poly matic a Coriolis	S: Disp mechan gons — nalysis comp	olacement nisms – - Velocit of simpl oonent o	y 8 e f	CO2
III		GEARS: —Spur C ratio — Pinion ge	Law of Gear terr Interfere ars	toothed ninology ence and	gearing and d underc	g — Inv lefinition cutting.	olutes a ns—Gea Helical,	nd cyclo r tooth Bevel,	oidal too action Worm,	oth profile — contac Rack an	s et 8 d	CO3
IV		GEAR T Epicyclic GYROS velocity effect on rigid disc	RAINS GearTra COPE: and acc naval c at an a	— Spee ains. : Gyro :eleratio ships; s .ngle fix	ed ratio, scopic on, gyro tability aed to a	train va Action oscopic of two rotating	lue — 1 n in 1 torque/ and f g shaft.	Parallel Machin couple our wh	axis gea es: an ; gyrose eel veh	r trains – gular copic icles,	8	CO4
v	l c r s c	KINEMATICS OF CAM JYIECHANISMS:Cams - Classification of followers and cams, radial cam nomenclature, analysis of follower motion (uniform, modified uniform, simple harmonic, parabolic, cycloidal), pressure angle, radius of curvature, synthesis of cam profile by graphical approach, cams with specified contours.8CO5										
Guest I	Lecture	rres (if any)										
Total I	Hours	s 40										
Sugges	stive lis	t of exper	iments:									

- 1. Calculate degree of freedom of various mechanisms and identify types of kinematic pairs present in it.
- 2. Measure torque at different speeds and find efficiency of epicyclic gear train.
- 3. Analysegyroscopiceffectforrotatingdiscinvariousdynamicconditions
- 4. Experimentally verify theoretical relation of gyroscopic couple for a rotating disc.
- 5. Measurevariousparameterscomprising the Corioli's component of acceleration and to verify theoretical expression.
- 6. Plotgraphbetweenfollowerdisplacementandcamrotationanglefordifferentcamfollowerpai rsand calculatejumpspeed.
- 7. Calculate module, gearratio and speedratio for each pair of gears in a simple gear train.
- 8. Calculategearratioandspeedratioforeachpairofgearsinaepicyclic gear train.
- 9. Analyse slider crank mechanism and its inversions.
- 10. Analyse double slider mechanism and its inversions

Text Books-

- 1. Rattan SS; Theory of machines; TMH
- 2. Ambekar AG; Mechanism and Machine Theory; PHI.
- 3. Sharma CS; Purohit K; Theory of Mechanism and Machines; PHI.
- 4. Thomas Bevan; Theory of Machines; Pearson/ CBS PUB Delhi.

Reference Books-

- 1. Ghosh,A,.Mallik,AK; Theory of Mechanisms & Machines.
- 2. Rao JS and Dukkipati; Mechanism and Machine Theory; NewAge Delhi

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. The practical marks are 50, out of which 30 marks will be awarded for viva voce and 20 marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1. Dr. Chandra Pal Singh
Checked and approved by	Name 1.Prof Sanjay Jain

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

Seme	ster/Year	IV / I	[Program				B.Tech.			
Subject Category	DC	Subject C	ode:	ME-40	04 5	Subject Name:		Fluid Mechanics				
	-	Maxii	num M	arks Allot	ted			Contact Hours				
	The	eory			Practic	al	Tota	``		Juis	Total Credits	
End Sem	Mid-Sem	Assignmen	t Qu	iz End Sen	l Lab n Wor	- Qu	iz Mark	s L	Т	Р	Cicuits	
60	20	10	10) 30	10	10) 150	3	0	2	4	
				I	I							
Prerequis	sites:(Only for	or open electi	ves)									
Course (Objective:											
To prov	vide an abi	lity to appl	y the]	knowled	lge of flu	id mecl	nanics on	engine	ering ap	plicatio	ons and	
fluid flo	ow probler	ns.										
Course (Dutcomes:											
After co	mpletion of	f the course,	studer	nts would	l be able t	0 -						
1.	Identify the	e basic prope	rties c	of fluids a	pplicable	in mech	nanical en	gineerin	g and stu	idy the i	nethods	
	for measure	ement of pre	ssure									
2.	Analyse the	e fluid behav	iour u	nder stati	ic condition	on and it	ts applicat	ion in m	echanica	al engine	eering	
3. 1	Evaluate in	e concept of	of flo	ant force	and stadi	CONSERV	vation of	n submer	the for	n of co	ntinuity	
7.	4. Assess unterent types of now, application of conservation of mass in the form of continuity equation											
5.	5. Apply the concept of conservation of energy to fluid flows in the form of Bernoulli's equation											
6.	6. Demonstrate the laminar and turbulent flows and analyse laminar flows through pipes and											
7	parallel pla	tes	1.	• 1	1 .	1 · ·1·	. 1	. 10		· 1'	1.1.	
/.	application	in mechanic	aimei al eng	gineering	design	ia simili	litude required for model studies and their					
P	O1 PO2	PO3 I	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	

CO1	3	3		1					2			
CO2	3	3		3					2			
CO3	3	3	2	2					2			
CO4	3	3		3					2			
CO5	3	3	2	3					2			
CO6	3	3		2					2			
CO7	3	3	2	3					2			
Conte	nts:											
UNI	Гs				Des	criptions					Hrs.	CO's
Ι		Fluid properties:Fluid and continuum, mass, density, specific weight, volume and gravity, viscosity, surface tension, capillarity, bulk modulus of elasticity, pressure and vapor pressure8CO1, CO2 & CO3Fluid statics:Pressure at a point, pressure variation in static fluid, Absolute and gauge pressure, manometers, Forces on plane and curved surfaces; buoyant force, Stability of floating and submerged bodies8CO1, CO2 & CO3										
Π		Kinematics of Flow : Description of fluid flow, LagrangianandEulerianmethod, Types of flow; ideal & real, steady & unsteady, uniform & non uniform, One, two and three dimensional flow, path lines, streak-lines, streamlines, Continuity equation for one and three dimensional flow, rotational & irrotational flow, circulation, velocity potential function, stream function, Separation of flow sources & sinks Elow nets										
III		Dynamics of Flow:Euler's equation of motion along a streamline and derivation of Bernoulli's equation, application of Bernoulli's equation, linear momentum equation for steady flow;The moment of momentum equation, forces on fixed and moving vanes8CO4, CO5Fluid measurement: tube);Velocity measurement (Pitot tube, Prandtl tube);8CO4, CO5										
IV		Viscous flow: Introduction to laminar & turbulent flow, Reynolds experiment & Reynolds number, relation between shear & pressure gradient, Laminar flow through circular pipes, Laminar flow between parallel plates, Energy correction factor, momentum correction factor8CO6Dimensional Analysis and Dynamia Similityday Dimensional Control000										
V		analysis,	dimensi	ham-	ð	07						

pi theorem, Model analysis, Similitude-Types of Similarities, dimensionless numbers, Similarity laws, specific model investigations (submerged bodies, partially submerged bodies)		
Guest Lectures (if any)		
Total Hours	40	
Suggestive list of experiments:		
1. Verification of Energy equation		
2. Calibration of Venturimeter		
3. Calibration of Orifice meter		
4. Calibration of Mouth Piece		
5. Calibration of Water meter		
6. Calibration of Nozzle meter		
7. Determination of C_c , C_d , C_v of orifice		
8. Reynolds experiment for demonstration of streamlines & turbulent flow		
9. Determination of friction factor of a pipe		
10. Verification of impulse momentum principle		
Text Books-		
1. R.K. Bansal; A text book Fluid Mechanics and Hydraulic machines; L LTD	axmi P	ublication
2. Cengel; Fluid Mechanics; TMH		
3. R.W. Fox & A.T. McDonald; Introduction to Fluid Mechanics; WILEY	1.	
4. S.K. Som and G. Biswas; Introduction to Fluid Mechanics and Fluid Ma	chines;	TMH
Reference Books-		
1. Frank M. White; Fluid Mechanics; TMH		
2. Donald F. Young; Fundamentals of fluid mechanics; WILEY		
Modes of Evaluation and Rubric		
There will be continuous evaluation for during the semester for 40 sessions	al mark	and 60

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. The practical marks are 50, out of which 30 marks will be awarded for viva voce and 20 marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:

Approval by Academic council on	Date:
Compiled and designed by	Name 1. Dr.Neetesh Singh Raghuvanshi
Checked and approved by	Name 1. Dr AshishManoria
	2 Dr Rajiv Jain

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

Semester/Year			IV /	IV / II Program					B.Tech.						
Subjec Categor	ry I	DL	Subject Code:		ME	ME-406 Subject Name:		et :	Computer Aided Design						
Maximum Marks Allotted Contact Hours															
Theory						Practical	1		Total						
End Sem	N	Mid-Sem		End Sem		Lab-Wo	ork Q	uiz	Marks	L	Т	Р	Credits		
-		-		30		10		10	50		1	4	3		
Prerequisites:(Only for open electives)															
Course Objective:															
The main learning objective of this course is to prepare the students to create CAD models.															
Course Outcomes:															
After completion of the course, students would be able to -															
 understand the fundamental of CAD Graphic standards and their modes understand the concept of geometric modelling Create 2D and 3D models Manipulate models get idea of strategic plan of CAD system Design & development 															
	PO1	PO	2 PC	03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2		1	1									
CO2	3	2	2		1	1									
CO3	3	2	2		1	1									

CO 4	3	2	2	1	1								
04	_	_										ļ	
CO5	3	2	2	1	1								
Contents:													
Fundamental concepts of computer graphics and its tools in a generic framework. Create and													
manip	ulate ge	ometric	models.	Create	3D mod	dels. Cre	ating an	d adding	g geome	tric toler	ances in		
assembly modelling and apply CAD standard practices in engineering design.													
Suggestive list of experiments:													
Text Books-													
 Donald Hearn and M.PaulineBaker"ComputerGraphics", Prentice Hall, Inc. 1992 CAD/CAM: Computer-Aided Design and ManufacturingGrooverPearson Education India Principles of Computer GraphicsWilliam M Neumann and Robert F.SproulMcGraw Hill Book Co. Singapore 													
Reference Books-													
 Chris McMohan and Jimmi Browne ,"CAD/CAM Principles, practice and manufacturingmanagement ", Pearson Education Asia , Ltd, 2000 Ibrahim Zeid"CAD/CAM- Theory and practice"-McGraw Hill, International edition,1998 													
Modes of Evaluation and Rubric													
There will be continuous evaluation for during the semester for 40 marks in laboratory													
assignments/performance/quiz and 60 marks for End term practical examination where student													
is supposed to complete the given assignment/task.													
Recommendation by Board of studies on							Date:						
Approval by Academic council on							Date:						
Compiled and designed by							Name 1.Dr. Chandra Pal Singh						
Checked and approved by							Name 1.Prof Sandeep Jain						