SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA, M.P. (An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department B.Tech. Program

Sen	nester/Year	V/III		Pro	ogran	1]	B.Tech.		
Subject Category	DE-I	Subject Code:	MEE-	354(A)	Sı	ubject N	ame:	Inte	ernal Co	ombust	ion Eng	gine
		Maximu	m Marks	Allotted					Cor	ntact Ho	NURG	Total
	Theor	ry			Prac	ctical		Total	01		Juis	Credits
End Sem	Mid-Sem	Assignment	Quiz	End Se	m	Lab- Work	Quiz	Marks	L	Т	Р	
60	20	10	10	30		10	10	150	3	0	2	4
				-		•		-	•	•		•

Prerequisites:(Only for open electives)

Course Objective:

This course is designed to provide a basic, fundamental understanding of internal combustion engines. This course covers many topics, including introducing IC engines and the various combustion processes in spark-ignition (SI) and compression-ignition (CI) engines. It also covers normal combustion, abnormal combustion, and using the heat balance sheet to judge the performance of an IC engine.

Course Outcomes:

After completion of the course, students would be able to -

- 1. Evaluate the performance of I.C. Engines
- 2. Understand the Combustion phenomena and design for S.I. and C.I. Engines.
- 3. Understand the workings of various I.C. engine systems such as Fuel, Systems, and Lubrication systems.
- 4. Understand different engine exhaust emissions and their controlling methods.
- 5. Evaluate methods for improving the I.C. Engine performance.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	2	3			1		2
CO2	3	1	2	1		1	2					1
CO3	2	3	3	2	2	3	1					
CO4	1	2	2	2	1	2	1					2
CO5	2	2	2	1	2	1	1		2			2

	Contents:		
UNITs	Descriptions	Hrs.	CO's
Ι	Internal Combustion Engine: S.I. and C.I. engines of two and four- stroke cycles, real cycle analysis of S.I. and C.I. engines, determination of engine dimensions, speed, fuel consumption, output, meaneffective pressure, efficiency, factors affecting volumetric efficiency, heat balance, performancecharacteristics of S.I. and C.I. engines, cylinder arrangement, firing ordcylinder engines, valve timing.	8	1
Π	Combustion in S.I. engines: Flame development and propagation, ignition lag, effect of air density,temperature, engine speed, turbulence and ignition timings, physical and chemicaldetonation, effect of engine and fuel variables on knocking tendency, knock rating of volatile fuels,octane number, H.U.C.R., action of dopes, pre-ignition, its causes and remedy, salient features of various type combustion chambers, valve timing and firing order.	8	2
III	Combustion in C.I. Engines: Times base indicator diagrams and their study, various stages of combustion, delay period, diesel knock, octane number, knock inhibitors, salient features of varioustypes of combustion chambers, fuel, ignition, cooling, exhaust and lubrication systems; Simpleproblems on fuel injection, various types of engines, their classification and salient features. Rotary I.C. engines, their principles of working.	8	3
IV	 I.C. Engine System: Fuels, ignition systems, cooling, exhaust/scavenging and lubrication system.Fuel metering in S.I. engine: Fuel injection in S.I. engine (M.P.F.I.& T.D.I.), Theory of carburetion, simpleproblems on carburetion. Fuel metering in CI engines: Fuel injection in CI engines and simpleproblems, various types of engines, their classification and salient features. Fuels: Conventional fuels and alternate fuels, engine exhaust emission, carbon monoxide, un-burnthydrocarbon, oxides of nitrogen, smoke, density, measurement and control, hydrogen as an alternatefuel. 	8	4
V	Supercharging: Effect of attitude on mixture strength and output of S.I. engines, low and high-pressure supercharging, exhaust, gas turbo-charging, supercharging of two-stroke engines.	8	5
Guest Lect	ures (if any)		

1000111	ours		40	
Suggest	ive list of experiments:			
1.	Load test in Ruston engine.			
2.	Measurement of Indicative power and brake conducting Morse test.	power and calculation of mechani	cal efficie	ency by
	Load test in Variable compression ratio engine (
4.	Performance and analysis of four-stroke sidynamometer.	ingle-cylinder diesel engine test	rig with	electric
5.	Performance and analysis of four-stroke for dynamometer.	our-cylinder petrol engine test rig	g with h	ydraulic
6.	Study of carburestter.			
7.	Study of fuel pump and fuel injector.			
8.	Study of the lubrication system.			
9.	Study of the cooling system.			
10.	Study of the battery ignition system.			
Text Bo	oks-			
1				
	Internal Combustion Engines by V. Ganeshan Internal Combustion Engines by R.K. Rajput			
Referen	ce Books-			
1.	A course in I.C. engines by M.L. Mathur& R.P. Shar	ma		
	Internal Combustion Engines Theory & Practice by C			
	Introduction to I.C. Engines by Richard Stone			
4.	Internal Combustion Engines by Domkundwar, Dhar	pat Rai Publications		
Modes of	of Evaluation and Rubric			
There	will be continuous evaluation for during the	semester for 30 sessional marks	and 60 s	emester
	rm Marks. The practical marks are 40, out			
) marks for lab work. Out of 40 sessional 1			
	to be awarded for day-to-day performance a			
	a semester – End examination as per the nor	· •	00 101411	
	nendation by the Board of Studies on	Date:		
Approva	al by the Academic Council on	Date:		
Compile	ed and designed by	Name 1. Dr.Gopal Kumar Deshmu	kh	

UNIT TECHNOLOGY	ALL ALL			SAMB	ΔΤ ΔςΗ			ICAL INSTI	TUTE			
AN OF CHES						College),			IOIL			
A) db (A We want				•	• • •		iliated to F	RGPV E	3hopal)		
VIDISHA M	at the			-		ngineeri				,		
Semest	er/Year		V/III	-	gram	0	0 1	B.Tech				
Subject			Subject		F-							
Catego		DE-II	Code:		4(B)	Subject N	lame:	Turbo	machi	nery		
Maxim	um Mar	ks Allot	ted		•				Con	tact Ho		Total
Theory				<u> </u>	Pra	ctical	-	Total	COII		uis	Credits
End	Mid-S	em	Assignme	en Quiz	, End		Quiz	Marks	L	Т	Р	
Sem			t		Sen	-						
60	20		10	10	30	10	10	150	3	0	2	4
Course	Objecti	ve:										
water	turbin	e, Cer		Pumps,				n turbo r ers and				
Course	Outcon	nes:										
Afteric	Under	ion of										
1. 2. 3.	Under Under	sis of tu stand v stand I	the princi urbo Mac various ty Rotary far	ples and hines pes of tuns, Blow	applic urbo tu ers, Co	urbines mpresso	Turbo and its ors	Machines applicatio insmitting	ns	o mach	ines	
1. 2. 3. 4.	Under Under	sis of tu stand v stand I	the princi urbo Mac various ty Rotary far	ples and hines pes of tuns, Blow	applic urbo tu ers, Co	ation of urbines mpresso	Turbo and its ors	Machines applicatio insmitting	ns	o mach PO1 0	ines PO1 1	P012
1. 2. 3. 4.	Under Under Under PO	is of tu stand v stand l stand l PO	the princi urbo Mac various ty Rotary far orinciples	ples and hines pes of tu ns, Blow and app	applic urbo tu ers, Co plicatio	ation of urbines mpresso ns of Po	Turbo and its ors wer tra	Machines applicatio insmitting	ns ; turbo	PO1	PO1	P012
1. 2. 3. 4. 5.	Under Under Under PO 1	is of tu stand v stand l stand l PO 2	the princi urbo Mac various ty Rotary far principles PO3	ples and hines pes of tu ns, Blow and app PO4	applic urbo tu ers, Co plicatio PO5	ation of urbines mpresso ns of Po PO6	Turbo and its ors wer tra	Machines applicatio insmitting	ns ; turbo	PO1	PO1	

CO4

CO5

	Contents:		
UNITs	Descriptions	Hrs.	CO's
I	Energy transfer in turbo machines: application of first and second laws of thermodynamics to turbo machines, moment of momentum equation and Euler turbine equation, principles of impulse and reaction machines, degree of reaction, energy equation for relative velocities, one dimensional analysis only.	6	1
=	 Steam turbines: impulse staging, velocity and pressure compounding, utilization factor, analysis for optimum U.F Curtis stage, and Rateau stage, include qualitative analysis, effect of blade and nozzle losses on vane efficiency, stage efficiency, analysis for optimum efficiency, mass flow and blade height. Reactions staging: Parson's stages, degree of reaction, nozzle efficiency, velocity coefficient, stator efficiency, carry over efficiency, stage efficiency, vane efficiency, conditions for optimum efficiency, speed ratio, axial thrust, reheat factor in turbines, problem of radial equilibrium, free and forced vortex types of flow, flow with constant reaction, governing and performance characteristics of steam turbines. 	9	2
111	 Water turbines: Classification, Pelton, Francis and Kaplan turbines, vector diagrams and work-done, draft tubes, governing of water turbines. Centrifugal Pumps: classification, advantage over reciprocating type, definition of mano-metric head, gross head, static head, vector diagram and work done. Performance and characteristics: Application of dimensional analysis and similarity to water turbines and centrifugal pumps, unit and specific quantities, selection of machines, Hydraulic, volumetric, mechanical and overall efficiencies, Main and operating characteristics of the machines, cavitations. 	9	3
IV	Rotary Fans, Blowers and Compressors: Classification based on pressure rise, centrifugal and axial flow machines. Centrifugal Blowers Vane shape, velocity triangle, degree of reactions, slip coefficient, size and speed of machine, vane shape and stresses,	8	4

5

Text Books-

- 1. Kadambi V Manohar Prasad; An introduction to EC Vol. III-Turbo machinery; Wiley Eastern Delhi.
- 2. Turbo Machines by A ValanArasu

Reference Books-

- 1. Venkanna BK; Turbomachinery; PHI
- 2. Shepherd DG; Turbo machinery
- 3. Csanady; Turbo machines
- 4. Bansal R. K; Fluid Mechanics & Fluid Machines;

- 5. Rogers Cohen & Sarvan Multo Gas Turbine Theory
- 6. Kearton W. J; Steam Turbine: Theory & Practice

Modes of Evaluation and Rubric

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1. Dr.Kamlesh Kumar Sharma
Checked and approved by	Name 1. Dr. Sanjay Katarey

Projana M.

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA, M.P. (An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

Ser	nester/Year	V/III		Pro	ogran	n]	B.Tech.		
Subject Category	DE-III	Subject Code:	MEE	-354(C)	S	ubject N	ame:		Gas	Dynaı	nics	
	·	Maximu	m Marks	Allotted					Cor	ntact Ho	nurs	Total
	Theor	y			Pra	ctical		Total	001	nuet I i	Juis	Credits
End	Mid-Sem	Assignment	Ouiz	End Se	m	Lab-	Quiz	Marks	т	т	Р	
Sem	wild-Selli	Assignment	Quiz	Life Se	111	Work	Quiz	wialks	L	1	1	
60	20	10	10	30		10	10	150	3	0	2	4

Prerequisites:(Only for open electives)

Course Objective:

This course provides the fundamentals of compressible fluid flow, emphasising a wide variety of steady, one-dimensional flow problems and a general understanding of the principles of multidimensional flow.

Course Outcomes:

After completion of the course, students would be able to -

- 1. Solve flow equations for quasi-one-dimensional flow through variable area ducts.
- 2. Analyze the flow through constant area ducts with friction and heat transfer.
- 3. Analyze flows with normal and oblique shocks.
- 4. Solve flow problems with supersonic velocities using shock-expansion theory.
- 5. Design experimental setup.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2				2	2					1
CO2	3	3	3	1	2	2	2					1
CO3	3	3	3	3	3	3	3					1
CO4	3	3	2	3	3	3	1					1
CO5	3	3	3	2	3	3	3	2	3	3	3	1

	Contents:			
UNITs	Descriptions		Hrs.	CO's
Ι	Introduction: Review of basic fluid dynamics, and conservation equations for inviscid flows.	thermodynamic principles,	8	1
П	Dimensional Flow: One-dimensional wave motion of the oblique shockwaves, Prandtl-Meyer expansion of the oblique of the obliq	· · · ·	8	2
III	Nozzle Flow: Isentropic Flow with area cha (Fannoaddition (Rayleigh flow), Method of charact isentropic flow).	•	8	3
IV	Supersonic Flow: Velocity Potential Equation, 2 Steady SupersonicFlow, Time Marching Technic Bodies and Nozzles.	-	8	4
V	Experimental setups: Shock Tubes, Comp Measurement Techniques,Experiment Design.	pressible flow facilities,	8	5
Guest Lectu	ures (if any)			
Total Hour	rs		40	
Suggestive	list of experiments:			
4. R. Reference H 3. Ma 4. An 5. Ya	alachandran P; Gas Dynamics for Engineers; PHI Learning Yadav, Steam and Gas Turbines			
Modes of E	Evaluation and Rubric			
	Il be continuous evaluation for during the semester for	or 30 sessional marks and 6	0 semest	P 1
There will term Mar	-			er End-
term Mar	-			er End-
term Mar	ks.	e:		er End-

Checkeu	and app	oved by						Na	ame 1. D	r. Sanjay	Kata	rey		
NON TECHNOLOGIC	A MILE AND A			(E (<i>P</i>	Engineer	ing C nomo	ollege ous Ins	e), VIDIS stitute /	SHA M.F Affiliate	d to RGP		opal)		
Semeste	r/Year			VI/III		gram				B.Tech				
Subject		DE-I		Subject	MEE		Subi	ject Nar	ne:	Mecha	troni	cs and A	utomati	on
Categor Maximu				Code:	363	(A)	00.07				1			
Theory		SAIIOLLE	eu			Pra	actica	al			Co	ntact Ho	urs	Total Credits
End	Mid-S	em	Assi	gnment	Quiz	En	d	Lab-	Quiz	- Total Marks	L	Т	Р	ereales
Sem		_		0		Se		Work	10		2	0	2	1
60	20		10		10	30		10	10	150	3	0	2	4
Course	Objectiv	e:												
multidis	Mecha	tronics a y nature	ofthe	comation i se fields a with the k	nd their	impa	ct on	various	indust	ries. Stud	ying e	echatron	ics and	tems,
Study of multidis automa automa innovati The com	Mecha ciplinary ion equ ce proce on. binatio	tronics a y nature lips indivisses for	of thes viduals efficie	se fields a	nd their knowled pst-effec	impa ge an tiven	ct on d skill ess, a	various Is need and con	industi ed to de tribute f	ries. Stud esign inte to advane	ying e Iligen ceme	echatron It, integra nts in teo	iics and ated sys chnology	and
Study of multidis automa automa innovati	Mecha ciplinary ion equ e proce on. binatio cturing	tronics a y nature ips indiv sses for n of the	of thes viduals efficie	se fields a with the k ncy and co	nd their knowled pst-effec	impa ge an tiven	ct on d skill ess, a	various Is need and con	industi ed to de tribute f	ries. Stud esign inte to advane	ying e Iligen ceme	echatron It, integra nts in teo	iics and ated sys chnology	and
Study of multidis automa automa innovati The com manufa Course	Mecha ciplinary ion equ e proce on. binatio cturing Dutcom Dutcom 1. Unc 2. Ana 3. Ana 4. Unc	tronics a y nature ips indivises for n of the es: n of the lerstance lyze the lyzethe	of thes viduals efficient se field course the Co e Senso Hydran	se fields a with the k ncy and co	nd their mowled ost-effec ularly po would t em. insducer neumation	impa ge an tiven werft be ab s cs sys and	ct on d skill ess, a ul in a le to - stem a progr	various Is need and con address – and Circ	industi ed to de tribute f ing the cuits	ries. Stud esign inte to advand challenge	ying o lligen ceme es of r	echatron It, integra nts in teo	iics and ated sys chnology	and
Study of multidis automa automa innovati The con manufa Course After co	Mecha ciplinary ion equ e proce on. binatio cturing Dutcom Dutcom 1. Unc 2. Ana 3. Ana 4. Unc	tronics a y nature ips indivises for n of the es: n of the lerstance lyze the lyzethe	of thes viduals efficient se field course the Co e Senso Hydran	se fields a with the k ncy and co s is particu , students ontrol Syst rs and Tra ulic and Pi obotics , A	nd their nowled ost-effec ularly po would t em. insducer neumatic ctuators	impa ge an tiven werft be ab s cs sys and	ct on d skill ess, a ul in a le to - stem a progr	various Is need and con address address	cuits	challenge	ying o lligen ceme es of r	echatron It, integra nts in teo	iics and ated sys chnology	and
Study of multidis automa automa innovati The con manufa Course After co	Mecha ciplinary ion equ e proce on. binatio turing Dutcom 1. Unc 2. Ana 3. Ana 4. Unc 5. Ana	tronics a y nature lips indivent sses for n of the es: n of the lerstance lyze the lerstance lyze the	of thes viduals efficient se field course the Co e Senso Hydrau the Ro Autom	se fields a with the k ncy and co s is partico , students ontrol Syst rs and Tra ulic and Pro obotics ,A nation and	nd their nowled ost-effec ularly po would t em. insducer neumatic ctuators	impa ge an tiven werft be ab s cs sys and y 4.0.	ct on d skill ess, a ul in a le to - stem a progr	various Is need and con address address	cuits	challenge	ying o lligen ceme es of r	echatron It, integra nts in teo modern e	iics and ated sys chnology engineer	r and ing and
Study of multidis automa automa innovati The con manufa Course	Mecha ciplinary ion equ e proce on. binatio cturing Dutcom mpletio 1. Unc 2. Ana 3. Ana 4. Unc 5. Ana	tronics a y nature ips indiverses for n of the es: n of the lerstance lyze the lerstance lyze the lerstance	of thes viduals efficient se field course the Co e Senso Hydrau the Ro Autom	se fields a with the k ncy and co s is particu , students ontrol Syst rs and Tra ulic and Pro botics ,A nation and PO4	nd their cnowledg ost-effec ularly po would b em. insducer neumation ctuators i industrin F	impa ge an tiven werft be ab s cs sys and y 4.0.	ct on d skill ess, a ul in a le to - stem a progr	various Is need and con address address	cuits	challenge	ying o lligen ceme es of r	echatron It, integra nts in teo modern e	iics and ated sys chnology engineer	r and ing and

CO4	3				3							
CO5	3		3	2	3							
	Contents:								<u> </u>			
UNITs Descriptions								Hrs.	CO's			
		lachatra	nine Custon		of ochor	ropics			romonto			
MechatronicsSystems: elements of echatronicssystems, measurementssystems, control systems, transfer functions, procedure for determining the transfer functions of a control systems, representation of a control system by block diagrams, modeling a control system, transient and steady state response, time response of a first order control systems, time response of second order control systems8								1				
Sensors and Transducers, characteristics parameters used in transducers, displacement sensor, position sensors, proximity sensor, motion sensors, light sensors, liquid flow sensor, digital transducers, Incremental optical encoders, absolute optical encoders.82							2					
Hydraulic and Pneumatic Actuating systems, Hydraulic systems, PneumaticIIIsystems, control valves, components of electro pneumatic systems, Pneumatic and Hydraulic circuits.							8	3				
IV Robotics and Programmable Logic Controllers :Degree of freedom of robotic system,robotjoints,robotcoordinates,robot characteristics, robot languages , classification of robots,application of robots, robot vision. IV Mechanical and electrical actuating systems, D.C. motors, A.C. motors, stepper motors, servomotor, programmable logic controllers, PLC programming, applications of PLC.						ges,	12	4				
Automation: introduction, Principles and Strategies of Automation, safety Monitoring, maintenance and repair Diagnostics, error Detection and Recovery, levels of automations, Merits and Demerits of automation. Automated Guided Vehicles (AGV's), Automated Storage and Retrieval System (ASRS),VAutomatic identification methods and Industry 4.0: Overview of Automatic Identification Methods, Bar Code Technology, Radio Frequency Identification, Other AIDC Technologies. Industry 4.0 strategy.							overy, ided tic	14	5			
Guest Le	ctures	(if any)									Yes-2	
Total Ho	urs										50	

Suggestive list of experiments:

1. Obtain the speed torque characteristics of AC Servo Motors.

2.Obtain the speed torque characteristics of DC Servo Motors.

3.Calibration of LVDT KIT

4. Determination of force using strain gauge Kit.

5. Determination of Angle using Capacitive Pickup.

6.Determination of Pressure using Strain Gauge.

7. Measurement of Temperature using Thermocouples.

8.Study of ASRS.

9.Study of Hydraulic and Pneumatic Actuator systems.

10.Study of PLC.

Text Books-

- 1. Mechtronics, K P Ramchandran , Wiley India Pvt. Ltd.
- 2. Robotics : Introduction to Robotics by Saeed B Niku, Pearson Education Asia

Reference Books-

- 1. Mechatronics, W. Boltan, Pearson Education.
- 2. Mechatronics, N P Mahalik, Tata McGraw-Hill Publishing Limited
- 3. Modern Control Systems, Katsuhiko Ogata, Prentice Hall

4. Hydraulics and Pneumatics: A Technician's and Engineer's Guide" by Andrew Parr

Modes of Evaluation and Rubric

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1.Dr.Ravindra Mohan Saxena
Checked and approved by	Name 1 Dr. Pankaj Agarwal

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

Semester/Year VI/III		Progr	Program				B.Tech.				
Subject		Subject	ME-	Subject Name		Computer Integrated					
Category	Category DE-II		363 (B)	Subject Name:		Manufacturing				
Maximum Marks Allotted								Conta	ct Hou	IRC	Total
Theory				Practical			Total	Contact Hours		Credits	
End	Mid-Sem	Accignment	Quiz	End	Lab-	Quiz	Marks		т	Р	
Sem			Quiz	Sem	Work		IVIALKS		I	F	
60	20	10	10	30	10	10	150	3	0	2	4

Prerequisites⊖Only for open electives)

Course Objective:

This course provides a simple understanding of the basic components of Computer Inegrated Manufacturing The course contains CIM, automation, control Strategies for automation, CAM, NC/DNC/CNC systems, Robot Technology, AS/RS, AGV systems, Group technology, FMS and Expert system.

Course Outcomes:

After completion of the course, students would be able to -

1. A knowledge of automated process in a modern manufacturing environment.

2. An understanding of using automation, control strategies towards numerical control,

robotics, automated storage and retrieval system, CIM, expert systems in manufacturing.

3. An understanding of anufacturin manufacturing/ production strategies such as group technology ,agilemanufaturing, FMS

4. Design and analysis of part program of cnc ,PLC, AS/RS, FMS, Robot programming

	DO1	DO 3	002	DO4	DOF	DOC	007	DO 0	DO 0	DO10	DO11	DO13
	PO1	PO2	PU3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2			2	1	2	1	3		3	3
CO2	3	2	1	1	3		2		3		3	2
CO3	3	2	1	1	3	1	3		3		3	1
CO4	2	3	3	3				1	3			1

	Contents:		
UNITs	Descriptions	Hrs.	CO's
I	Introduction- Introduction, Modern manufacturing, Integration and rationalization, Elements of CIM system, CIM hardware and software, Implementating CIM, Advantages and limitations	6	1
II	 Automation and Production Systems- History of automation, Building block of automation technology, Types of automation systems, Automation production economics, Viability appraisal for automated production Control Strategies for Automation System- Control process, Electrical and Mechanical Analogies, Laplace Transform, Transfer Function, Linear and Non-linear systems, Adaptive Control, Logical Sequence Control, PLCs and Networking for Automation 	10	2
111	Computer Aided Manufacturing- Introduction, CAM hierarchy, Elements of CAM systems, CNC machine types, Classification, File Formats, Controllers, Hierarchical controls, Tooling on CNC, Fixtures on CNC, Rationale for CAD/CAM, NC, DNC, CNC and Adaptive control, Methods of Part-programming, CAM softwares	8	3
IV	Robot, Automated Material Handling and Storage system- Robot anatomy, Robot Congiguration, Robot control systems, Accuracy, Repeatability, End effectors, Robot programming, Robot languages, Robot applications, Automated material handling and storage system, Design of system, Automated guided vehicle systems, Automated retrieval systems.	8	4
v	Group Technology(GT),Computerized Manufacturing Planning System- Introduction, Part families, Part anufacturing and coding, Production flow analysis, Machine cell design, Celluar manufacturing systems, Agile anufacturing, Flexible manufacturing systems(FMS), Types of flexibility and uncertainty.Expert Systems- Introduction to expert systems, Need and classification,Artifial Intelligence	8	5
Guest Le	ctures (if any)		
Total Ho	urs	40	

Suggestive list of experiments:

- 1. Study of equipment available in CIM lab.
- 2. Study of Process Planning and Part Programming.
- 3. Study of Preparatory Functions (G- Codes)
- 4. Study of Miscellaneous Functions (M- Codes)
- 5. Preparation of a part program for given parts on CNC Lathe machine.
- 6. Preparation of a part program for given part on CNC Milling machine.
- 7. Study and part program preparation of AS/RS.
- 8. Study and Location setting of AGV.
- 9. Study and Location setting of Robotic Arm.
- 10. Study of working of the FMS by using CNC Lathe, CNC Milling, Transfer Conveyor, Robotic Arm,AS/RS, and AGV.

Text Books:

- 1. Production System & CIM by Groover: PHI
- 2. Automation Production Systems and Cmputer Integrated Manufacturing by Mikell P Groover: PHI
- 3. Principle of Automation and Advanced Manufacturing Systems By Dr K C Jain and Sanjay Jain
- 4. Robotics- Control, Sensing, Vision and Intelligence by K S Fu, RC Gonzalez and C S E Lee: Tata McGraw Hills
- 5. CAD/CAM: Principles and Applications by P N Rao: Tata McGraw Hills
- 6. CIM: Principle of Computer Integrated Manufacuring by J B Waldner: John Wiley & Sons

Modes of Evaluation and Rubric

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1.Prof Sanjay Jain and Prof Neeraj Sen
	Name 1. Dr Sanjay Katarey

San LINGK TECHNOLOGICAL HE	
ALL AND AL	
A CORE AND	
A CE	
ater and atmin	

(An Autonomous Institute Affiliated to RGPV Bhopal) Mechanical Engineering Department

(Engineering College), VIDISHA M.P.

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE

Semester/Year VI/III P		Progr	Program				B.Tech.				
Subject Category	, DE-III	Subject Code:	MEC- 363(C	SL	Subject Name: TECH			MODERN MANUFACTURING TECHNOLOGY(AI,IOT,DIGITAL MANUFACTURING)			
Maximu	m Marks Allott					Conta	ct Hou	irc	Total		
Theory				Practical			Total	contact nours			Credits
End Sem	Mid-Sem	Assignment	Quiz	End Sem	Lab- Work	Quiz	Marks	L	т	Р	
60	20	10	10	30	10	10	150	3	0	2	4

Prerequisites: (Only for open electives)

Course Objective:

The students are expected to understand special machining process, micromachining process etc, also students to know the fundamental of manufacturing and Industry 4.0,gain the knowledge of machine learning and data analytics. Students also understand the basics of AI in area of Manufacturing science.

Course Outcomes:

After completion of the course, students would be able to -

- 1. To produce useful research output in machining of various material.
- 2. Application of knowledge to manage shop floor problem.
- 3. Emerging technologies to address IoT challenges.
- 4. Apply the smart factory concept in manufacturing industry.
- 5. Understand and apply the AI tool in manufacturing.

	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		1			2	1					1
CO2	2			2			2		2			1
CO3	1	2	1	2		1						
CO4	2		2		2			2				3
CO5	2		1		1	2		1				3
	Contents:											

UNITs	Descriptions	Hrs.	CO's
I	MICRO MACHING AND NANO FABRICATIONTheory of micromachining-Chip formation-size effect in micromachining- microturning, micromilling, microdrilling- Micromachining tool design- Micro EDM-Microwire EDM-Nano fabrication:LIGA, Ionbeametching,Molecularmanufacturingtechniques-Atomicmachining- Nanomachiningtechniques- Top/Bottom up Nano fabrication techniques - Sub micron lithographic technique, conventional film growth technique, Chemical etching, Quantum dot fabrication techniques – MOCVD – Epitaxy techniques.	5	1
II	RAPID PROTO TYPING AND SURFACE MODIFICATION TECHNIQUESIntroduction – Classification – Principle advantages limitations and applications- Stereo lithography – Selective laser sintering –FDM, SGC, LOM, 3D Printing-Surface modification Techniques: Sputtering- CVD-PVD- Diamond like carbon coating-Plasma Spraying TechniqueDiffusion coatings-Pulsed layer deposition.	5	2
III	INTERNET OF THINGS FOR MANUFACTURINGTechnology of the IoT and applications,.IoT data management requirements, Architecture of IoT, Issues in implementing IoT, Technological challenges, Design challenges in IoT -Standardization, Security and privacy, Infrastructure, Analytics, Design principles for connected devices -Embedded devices, physical design, online components, embedded coding system. Informed Manufacturing plant – Elements, IoT implementation in Transportation and logistics, Energy and utilities, Automotive Connected supply chain, Plant floor control automation, remote monitoring, Management of critical assets,Applications HCI and IoT world -Multilingual interactions Robotics and Autonomous Vehicles Sensing and data processing-Simultaneous mapping and localization-Levels of autonomy, Smart factories, Future research challenges	12	3
IV	SMART MANUFACTURINGIndustry 4.0:Basic principals and technologies of smartfactory,Digitalization and Networked economy, Globalization and EmergingIssues, Artificial Intelligence nad Augmented reality in manufacturing,human Robot collabratiion,standards of industry 4.0 and cloudapplication,cloud Manufacturing and the connectedfactory,dataanalytics,Introduction and Importance and charecterstics ofBig data,Size of big data,Types of analytics ,model complexity,Over and	9	4

Text Books-

- 1. SeropeKalpakjian., "Manufacturing Engineering and Technology" Pearson Education, 2001
- 2. 2.Adrian McEwan and Hakim Cassimally, "Designing the internet of things", Wiley, 2013

Reference Books-

- 1. Bandyopadhyay. A.K., Nano Materials, New age international publishers, New Delhi, 2008, ISBN:8122422578.
- 2. Bharat Bhushan, Handbook of nanotechnology, springer, Germany, 2010.
- 3. Jain V.K., 'Introduction to Micro machining' Narosa Publishing House, 2011
- 4. Code Halos: How the Digital Lives of People, Things, and Organizations are Changing the Rules of Business, by Malcolm Frank, Paul Roehrig and Ben Pring, published by John Wiley & Sons.
- 5. Internet of Things: A Hands-On Approach by Vijay Madisetti, ArshdeepBahga, VPT; 1st edition 2014

Modes of Evaluation and Rubric

– End examination as per the norms of AICTE.					
Recommendation by Board of studies on	Date:				
Approval by Academic council on	Date:				
Compiled and designed by	Name 1.Neeraj Sen				
Checked and approved by	Name 1. Dr Sanjay Katarey				

Plaister 10				(Engi (An A	neerin Autono	ig Colle mous	ege), V Institu	/IDISHA ite Affi	CAL INST A M.P. liated to rtment		Bhopal)		
Semeste	er/Year		VI/III	Pr	ogram)			B.Tech	•			
Subject Categor							ect Na	ame:	Dynam	nics of	Machin	e	
Maximum Marks Allotted Total													
Theory					Р	ractica	əl			- Con	tact Ho	urs	Credits
End					End Lab- Quiz		Total						
Sem	Mid-S		Assignmer		iz S		Work		Marks	L	Т	Р	
60	2	20	10	1	0				100	3	1		4
Course Objective:													
After co 1. 2. 3.	Unde Unde Learn	rstand t rstand l functic	ne course, st turning mon palancing co pns of variou	nent dia oncepts us Gove	agrams of Bal	s of dif ancing and ar	fferent g and a nalysis	t engin inalyze variou:	inertia fo s forces a	orces i Issocia	n IC eng ted in G	ines iovernor	'S
4. 5			ots of friction			d anal	yze fui	nctioni	ng of Clut	tches,	Bearing		
5.	Unde	rstand (concepts of	vibratio	ons								
	PO1	PO2	PO3	PO4	PO5	PC	06 P	07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2									
CO2	3	3	2	2									
CO3	3	3	2	2									
CO4	3	3		2									
CO5	3	3	2	2									
						Conte	ents:						

	Turning Moment and Flywheel: Turning Moment Diagram for a Four		
	Stroke Cycle I.C. Engine and Multi Cylinder Engine, Fluctuation of Energy		
I	and Production of Energy and Co-Efficient of Fluctuation of Energy, Co-	8	1
	Efficient of Fluctuation of Speed, Energy Stored in a Flywheel		
	Balancing of Inertia Forces and Moments in Machines: Balancing of		
	rotating masses, two plane balancing, determination of balancing masses		
	(graphical and analytical methods), balancing of rotors, balancing of		
II	internal combustion engines (single cylinder engines, in-line engines, V-	8	2
	twin engines, radial engines, Lanchester technique of engine balancing,		
	Alignment of shaft		
	Governors: Functions Various Terms Used, Types of Governor Watt,		
Ш	Porter, Proell&Hartnell, Inertia Governor, Sensitiveness and Stability of		
	Governor; Isochronous Governor, Hunting, Effort and Power of a Porter	8	3
	Governor, Controlling Force Diagrams For Porter and Spring Controlled		
	Governor, Coefficient of Insensitiveness		
	Brakes & Clutches: Materials for friction surface, uniform pressure and		
IV	uniform wear theories, Design of friction clutches: Disk, plate clutches,	8	4
	cone & centrifugal clutches. Design of brakes: Rope, band & block brake,		
	Internal expanding brakes, Disk brakes		
	Single Degree Free Vibration: Basic features of vibratory systems,		
	Degrees of freedom , single degree of freedom, Free vibration, Equations		
	of motion, Natural frequency, Types of Damping, Damped vibration		
V	Forced Vibration: Response of one degree freedom systems to periodic	8	5
	forcing, Harmonic disturbances, Disturbance caused by unbalance,		
	Support motion, transmissibility, Vibration isolation		
	vibration measurement		
Guest Lec	tures (if any)		
	rs		

Suggestive list of experiments:

Text Books-

- 1. Rattan SS; Theory of machines; TMH
- 2. Ambekar, AG; Mechanism and Machine Theory; PHI
- 3. Sharma and Purohit; Design of Machine elements; PHI
- 4. Ghosh and Mallik; Theory of Mechanisms and Machines; Affiliated East-West Press, Delhi
- 5. Grover; Mechanical Vibrations
- 6. Theory of Vibrations by Thomson Shingley J.E; Machine Design; TMH

Reference Books-

- 1. Bevan; Theory of Machines
- 2. Norton RL; kinematics and dynamics of machinery; TMH
- 3. Balaney; Theory of Machines

Modes of Evaluation and Rubric

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1.Dr. Chandra Pal Singh
Checked and approved by	Name 1. Prof. Sandeep Jain

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal) Mechanical Engineering Department														
Semeste	er/Year		VI/III		Program	า				B.Tech	۱.			
Subject			Subjec	t		(2)	с I ·			Indust	rial E	ngineeri	ng and	
Categor	у	DE-II	Code:		MEE364	H(R)	Subje	CT N	ame:	Mana	geme	nt		
Maximu	ım Mar	ks Allo	tted		1						6			Total
Theory					Practical				Table	Cor	ntact Ho	urs	Credits	
End		·	A		0	End	d La) -	Quiz	- Total		-		
Sem	Mid-S	bem	Assignme	ent	Quiz	Ser	m W	ork		Marks	L	Т	Р	
60	20		10		10					100	3	1		4
	Prerequisites:(Only for open electives)													
Course Objective: Course Outcomes:														
	 Ab Ab Ab Ab Ab 	le to po le to ar le to pr le to su	ne course, erform Me nalyze Ergo repare Plan uggest Jigs nalyze proo	ethod onom nning and f	Study an nics and h g related t fixtures as	d Tin umai to Ma s per	ne Stuo n facto anufac job re	dy in r de turir quir	mands 1g	of Indu			-	rn Tools
	PO1	PO2	PO3	PO4	PO	5	PO6	P	07	PO8	PO9	PO10	PO11	PO12
CO1	3			3	2						2	3	1	
CO2	3	2	2	2			3	1		1	1		2	
CO3	3	1	2								2	2	1	
CO4	3													
CO5	3	2		3	1						2	2	3	2
						Со	ntents		•					

UNITs	Descriptions	Hrs.	CO's
I	Productivity: Concept of production, types of production, concept of productivity, production Vs productivity, factors influencing productivity, Moslow's theory of hierarchy of needs, productivity Vs standard of living.	8	1
II	Method Study: Introduction to work study, definition of method study, basic steps of method study, process chart, recording techniques, diagrams and templates, Therblig, micro-motion study, SIMO chart, memo-motion study, principles of motion economy.	8	2
111	Time Study: Procedure of work measurement, apparatus required for time study, Rating, measuring the job, elements, allowances, standard time, synthetic data, analytical estimating, PMTS, work factor, MTM, activity sampling, applications, numerical problems.	8	3
IV	 Human Factors Engineering: Introduction to ergonomics and human factors Engineering, physiological basis of human performance, Biomechanics, Psychology of work and work load perception, Physical work environment, Basis of ergonomic problem identification, Safety 	8	4
V	Production Planning and control: Types of production function of production planning and control, organization of production planning and control, pre-planning operation, planning of productive capacity plant, requirements of special tooling like jigs and fixtures. Routing, loading, scheduling, dispatching and follow- up, production control in intermittent manufacture and continuous manufacturing, bar chart, operation chart, flow chart, Gantt chart, sequencing, numerical problems	8	5
Guest Lee	ctures (if any)		
Total Ho	urs	40	

Suggestive list of experiments:

Text Books-

- 1. Benjamin .W. Neibel, Motion and Time Study, Richard D. Irwin Inc., Seventh Edition, 1982.
- 2. Barnes, R.M. Motion and Time study, John Wiley, 1980.
- 3. Stephen Konz, Work Design, Publishing Horizon Inc., Second Edition, 1979.
- 4. Industrial Engineering and Production Management by Jain, Verma&Kartikeya, Dreamtech Publication 2013.
- 5. Jain and Agrawal, Production Planning & Control and Industrial Management, Khanna publishers

Reference Books-

- 1. Buffa, sarin, Modern Production/Operations Management, 8/e, John Wiley & Sons
- 2. Bridger R.S., Introduction to Ergonomics, McGraw Hill, 1995
- 3. ILO, Work Study, ILO Publication.

Modes of Evaluation and Rubric

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1.Dr. Chandra Pal Singh
Checked and approved by	Name 1. Prof. Sanjay Jain

Tolsha M				(Er (Aı	MRAT AS ngineering n Autono echanical	g Co mou	llege), s Instit	VIDI ute	ISHA M Affilia	1.P. ted to R		3hopal)		
Semest	emester/Year VI/III Program B.Tech.													
Subject Categor	N	DE-III	Subject Code:		MEE364	(C)	Subje	ct Na	ame:	Produ	ction	Plannin	g and Co	ontrol
Maximu	-													Total
Theory		KS AIIU	lleu		[Dra	ctical				- Coi	ntact Ho	urs	Credits
End						End Lab- Quiz		Total				creats		
Sem	Mid-9	Sem	Assignme	nt 0	Quiz	Sen			Quiz	Marks	L	Т	Р	
60	20		10	1	10	Sen		U K		100	3	1		4
00	20		10							100	5	-		•
Prerequ	iisites:(Only fo	or open elec	tives)									
Course Objective:														
Course After co	1. Exp 2. Evo 3. Evo 4. An 5. Ap	on of th plain pr aluate aluate alyze a ply for	ne course, s roduction sy MRP and JIT basics of va ggregate pl ecasting an	ysten F syst riabil annir d sch	ns and the ems agai ity and its ng strateg eduling te	eir cl nst t s rol gies. echn	haracte raditio e in the iiques t	erist nal e pe to pi	invent rforma roduct	ance of a	ems	luction s	system.	
	PO1	PO2	-	PO4	POS		PO6	_		PO8	PO9	PO10	PO11	PO12
CO1	3			3	2						2	3	1	
CO2	3	2	2	2			3	1		1	1		2	
CO3	3	1	2								2	2	1	
CO4	3													
CO5	3	2		3	1						2	2	3	2
CO6	3	2		3	1						2	2	3	2

	Contents:		
UNITs	Descriptions	Hrs.	CO's
I	Introduction to Production Systems: Production Systems: Classification & Characterization, Overview of Production Planning and Control issues, Review of EOQ & inventory control systems	8	1
II	Material Requirement Planning: Dependent Demand & Material Requirement Planning, Structure of MRP system, MRP Calculations, Planning Issues, Implementation Issues.	8	2
111	Just in Time Production Systems: Just-in-Time System: Evolution, Characteristics of JIT Systems, Continuous Improvement, Kanban System, Strategic Implications of JIT System. Push and pull production systems.	8	3
IV	Aggregate Planning: Aggregate Planning: Purpose & Methods, Reactive and Aggressive Alternatives, Planning Strategies, LP Formulation, Master Production Scheduling.Flow Shop, Job Shop Dispatching	8	4
v	 Forecasting Methods: Demand Forecasting: Principles and Methods, Judgment methods, Causal methods, Time-series methods Theory of Constraints: Concept of bottleneck, Local and global optima, Five steps of TOC approach, Performance measures. 	8	5
Guest Le	ctures (if any)		
	urs	40	
Total Ho			

1. Krajewski L.J. and Ritzmen L.P., "Operations Management: Strategy and Analysis", 9th Edition, Pearson Education, 2010.

2. Chase R.B. Jacobs F.R. and Aquilano N.J., "Operations Management for Competitive Advantage", 11th Edition, Tata McGraw Hill Book Company, New Delhi, 2010.

Reference Books-

- 1. Hopp W. J. and Spearman M. L. "Factory Physics: Foundations of Manufacturing Management", McGraw Hill International Edition, 3rd Edition, 2008.
- 2. Mukhopadhyay S.K., "Production Planning and Control", 2nd Edition, PHI, Eastern Economy Edition, 2013.

Modes of Evaluation and Rubric

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1.Dr. Chandra Pal Singh
Checked and approved by	Name 1. Prof. Sanjay Jain

Manual TECHNOLOG	a martine			(E (A	AMRAT AS Engineerir An Autonc Iechanica	ng Col omou	llege), V s Institu	/IDIS ute A	HA N ffilia	1.P. ted to R		3hopal)		
Semest	er/Yea	r	VI/III		Program	۱				B.Tec	h.			
Subject Catego		DE-IV	Subje Code:		MEE364 (D)	ŀ	Subjec	t Nar	me:	Reliat	oility E	ingineer	ing and	ТРМ
Maxim	um Mai	rks Allo	tted			E					Col	ntact Ho		Total
Theory						Pra	ctical			Total	0		urs	Credits
End Sem	Mid-S	Sem	Assignm t	ien	Quiz	End Sen			Qui <u>z</u>	Mark s	L	т	Р	
60	20		10		10					100	3	1		4
Course After co	ompleti 1. lea 2. an	on of t arn bas alyze v	he course ic Concep various rel	ts of iability	Reliability y models				strib	ution				
	4. lea	arn reli	ability cer ailure mo	ntred r	maintenar									
	PO 1	РО 2	PO3	PO4			PO6	PO	7	PO8	PO 9	PO10	PO11	PO12
CO1	3	1	1	1				1		1			1	1
CO2	1	2	3	3				1		1			2	
CO3	1	2	2	3				1		1			1	1
CO4	1	2	2	3				1		1			1	1

	Contents:		
UNITs	Descriptions	Hrs.	CO's
I	Basic Concepts of Reliability: Probability distributions used in maintenance engineering- Binomial, Poisson, Exponential, Normal, Log-normal, Gamma and Weibull distribution; failure rate, hazard rate, failure modes, MTTR, MTBF, MTTF	8	1
II	System Reliability Models: System reliability–n-component series systems, m-component parallel systems and combined system; standby systems; K-out-of-m systems; redundancy techniques in system design; event space, decomposition (Key Stone), cut and tie sets, Markov analysis, reliability and quality, unreliability, maintainability, availability	8	2
111	Reliability Testing: Introduction, testing requirements, testing methods: Marginal Testing, Non- destructive testing, reliability tester, acceleration models, SWOT analysis	8	3
IV	TotalProductive Maintenance: Evolution of TPM, TPM objectives, concept, pillars of TPM, Terro technology, Six Big Losses autonomous Maintenance. Reliability centered maintenance: concept, methodology, benefits	8	4
v	Failure Modes and Effects Analysis (FMEA) Failure Modes and Effects Analysis (FMEA) Failure Modes, Effects and Criticality Analysis (FMECA):Overview, elements of FMECA applications and benefits, risk, evaluation, risk priority numbers, criticality analysis, process FMEA, qualitative and quantitative approach to FMECA; design FMEA and steps for carrying out design FMEA	8	5
Guest Leo	ctures (if any)		
Total Ho	urs	40	
Suggestiv	ve list of experiments:	1	

Text Books-

- 1. Ebeling CE; An Introduction To Reliability & Maintainability Engg; TMH
- 2. Srinath L.S; Reliability Engineering; East West Press.
- 3. Naikan; Reliability engg and life testing; PHI
- 4. Kapur KC and Lamberson LR; Reliability in Engineering Design; Wiley India
- 5. Telang AD and Telang A; Comprehensive Maintanance Management; PHI
- 6. Mishra R.C; Reliability and Maintenance Engineering; New age International publisher.
- 7. Dhillon; EnggMaitainability- How to design for Reliability and easy maintenance; PHI
- 8. Davidson John; The Reliability of mechanical system; Institution of Mech. Engineers, London

Reference Books-

- 1. Patrick D.T and O.'Connor; Practical Reliability Engineerin; John Wiley and Sons
- 2. Modarre M; Reliability and Risk Analysis, Marcel Dekker Inc CRC Press
- 3. Balaguruswamy; Reliability Engg; TMH

Modes of Evaluation and Rubric

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1.Dr. Chandra Pal Singh
Checked and approved by	Name 1. Prof. Sanjay Jain

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal) **Mechanical Engineering Department** B.Tech. VI/III Semester/Year Program Subject Subject OC-OC Subject Name: **Introduction to Economy and Finance** Category Code: Maximum Marks Allotted Total Contact Hours Theory Practical Credits Total End End Lab-Quiz Mid-Sem Assignment Quiz Marks L Т Р Work Sem Sem 60 20 10 10 100 3 0 3 Prerequisites:(Only for open electives) **Course Objective:** This course provides a simple understanding of the basic components of steam power plant. The course contains steam generators, the analysis of vapour power cycle, Gas dynamics and flow through steam nozzles, Reciprocating air compressors, Steam turbines for power generation and condensers. **Course Outcomes:** After completion of the course, students would be able to -1. Explain underlying concept of economy, finance and managerial economics. 2. Identify different finance markets and products, asset class, their value and associated risk therein. 3. Interpret different financial statements, ratios and assess financial health on the basis of financial statements. 4. Describe game theory rivalry competition and their applications in life 5. Evaluate/calculate value of different financial instruments at any given point of time (present/future value) **PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10** PO11 **PO12** CO1 1 1 2 2 **CO2** 1 1 1 3 CO3 1 3 1 **CO4** 1 1 3 CO5 2 2

Contents:				
UNITs	Descriptions	Hrs.	CO's	
Ι	Economics: Economics and Economy, types, Microeconomics and Macroeconomics, Sectors, purpose and challenges Market Economies, salient features of Indian economy Managerial economy- The Demand Curve, Factors that Affect Demand, The Supply Curve, Factors that affect Supply, law of demand and supply, elasticity.	8	1	
Π	Financial Market; Introduction, overview of financial system, institutional financing theory of interest rate, term structure of interest rate and yield curve. Important financial instruments and products, finance system functioning, key issue in financial function. Risk in financial market. Inflation-cause pros and cons,	8	2	
III	Short term and Long term financial market: Money market and capital market, Important financial instruments like Call money, T-Bills, commercial papers, Bonds- government and corporate, Equity, private equity etc. Risk in financial market, introduction to Foreign exchange market, importance, participants functioning. Basic fundamentals of Derivative market-future, option and under laying.	8	3	
IV	Financial Statements: Fundamental accounting terms and systems, financial statements- balance sheet income statement expense and profit cash flow statement, analysing statements and assessing financial health, Important ratios in financial statements, difference between a financial institutions and product company.	8	4	
V	Rivalry Competition and Game theory: Competition, Oligopoly and monopoly. Buyers and sellers surplus, deadweight, Bertrand, Cournot and Stackelberg models. Game theory-prisoners dilemma, Nash equilibrium etc. Application of Game theory. Introduction to behavioral economics: biases and heuristic, emotions and decision making	8	5	
Guest Lectu	ures (if any)			
Total Hours		40		
Suggestive	list of experiments:			
ni				
Text Books	-			
Reference I	Boo Managerial Economics by Piyali Gosh Gitika & Purva Roy Choudhary McG	raw Hills		

Financial Accounting by S N Maheshwari & Sunil K Maheshwary

Managerial Economics by William F Samuelson – Wiley publication

Indian Economy by Ramesh Singh – McGraw Hills

Indian Financial System by Bharti Pathak-Pearson

Financial Institutes and Market: Structure, Growth & Innovation by Bhole- McGraw Hills

Taxmann's Balance Sheet Decoded by G C Pipara- Taxmann Publications

Principles of Economics with course mate by N Gregory Mankiw-Cengage

ks-

Modes of Evaluation and Rubric

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1. Dr Sanjay Katarey
Checked and approved by	Name 1