Time : 3 Hrs

Max. Marks : 70
Min. Marks : 22
Note: Total number of questions are 05. All Questions are compulsory. Each Question has 4 parts (a, b, c, d). Part a, b \& c are compulsory while Part d has internal Choice. Assume missing data, if any.
Word limit be observed as follows:
Part a - Max 50 words, Part b-Max 50 words,
Part c-Max 100 words and Part d-Max 400 words.
Word limit NOT to be followed for diagram, numerical, derivation.
Q. 1 (a) Distinguish between green sand moulding and dry sand moulding. 02
(b) State the process of sand preparation. 02
(c) What considerations are necessary while designing a pattern? 03
(d) Explain the common allowances provided on pattern and why? 07

OR

How does a cold chamber die casting machine differ from a hot chamber machine?
State the main advantages and limitations of die-casting also.
Q. 2 (a) Define forging. State the operations that are normally employed in forging. 02
(b) Differentiate between coining and embossing. 02
(c) Explain how forging improves the mechanical properties of components. 03
(d) What is metal Spinning? What type of components are generally manufactured by this 07 process.

OR

Draw a sketch of a punch and a die set used for punching operation. Indicate its various parts.
Q. 3 (a) How is an arc obtained in electric welding? 02
(b) Why is it normally necessary to use filler material in welding with tungsten arc? Give02 reason.
(c) State the types of flames obtained in an oxy-acetylene gas welding process giving the 03 applications.
(d) Explain the principle underlying the resistance welding process.

OR

Define thermit welding. How can shape of the joint be effectively controlled in 07 thermit welding?
Q. 4 (a) State the characteristics of the ideal cutting tool materials.02(b) State the various forms of wear found in cutting tools.02
(c) Define machinability. State the factors on which machinability depend.03
(d) Considering the various forces acting on the chip, draw merchant force diagram. State07 the assumption made.

OR

Differentiate between orthogonal and oblique cutting. What is the utility of orthogonal07 cuiting?
Q. 5 (a) What is comparator? State the types of comparators used.02
(b) Write short note on slip gauges.02
(c) Define the terms tolerance, limits and fit with reference to the dimensional 03 measurement.
(d) Explain the Vernier principle as used in linear measurements.07

OR

Explain the principle of Sine bar for measuring angles.

ME-1842
 Examination-May-June - 2022
 B.Tech. IV Sem : Mechanical Engineering Applied Thermodynamics

Max. Marks : 70
Min. Marks : 22

Note: Total number of questions are 05. All Questions are compulsory. Each Question has 4 parts (a, b, c, d). Part a, b\& compulsory while Part d has internal Choice. Assume missing data, if any.
Note:- Steam tables are permitted in the examination hall.
Word limit be observed as follows:
Part a - Max 50 words, Part b-Max 50 words,
Part e-Max 100 words and Part d-Max 400 words.
Word limit NOT to be followed for diagram, numerical, derivation.
Q. 1 (a) What is heat balance sheet of a boiler and what is its use? 02
(b) What is Boiler Draught?
(c) What are super critical boilers? Give their advantages.
(d) A boiler produces 10 kg of steam per kg of fuel from feed water at $30^{\circ} \mathrm{C}$ at 9 bar absolute pressure. What is equivalent evaporation from and at $100^{\circ} \mathrm{C}$ per kg of fuel and factor of evaporation, if the steam produced is 0.9 dry?

OR

Discuss the construction and working of Benson Boiler with neat sketch.
Q. 2 (a) What is ideal Carnot cycle?
(b) What is reheating? What are the advantage of reheat Rankine cycle?
(c) What do you understand by steam rate and heat rate?
(d) What is the effect of superheat on the efficiency of Rankine cycle?

OR

Steam at pressure of 100 bar and $500^{\circ} \mathrm{C}$ is supplied to turbine. It comes out at 0.075 bar and 80% dryness. One stage of reheating is used. The net power output from the turbine is $1800 \mathrm{KJ} / \mathrm{kg}$. Calculate the thermal efficiency of the plant.
Q. 3 (a) Define Mach Cone and Mach angle.
(b) Why the steam nozzles are made convergent -divergent?
(c) What is mach number? What is the significance of Mach number in compressible fluid03 flow?
(d) What is stagnation state? What do you mean by stagnation properties?

OR

An acroplane is flying at a speed of $1400 \mathrm{~km} / \mathrm{hr}$ at an altitude where the ambient temperature is $-21^{\circ} \mathrm{C}$. Find the Mach number of the flight.
Q. 4 (a) Define isothermal efficiency and adiabatic efficiency.
(b) What are the advantages of multi-stage compression over single-stage compression?
(c) What are rotary compressors? How are rotary compressor classified?
(d) Prove that for perfect inter-cooling of a two-stage reciprocating air compressor work input would be minimum when intermediate pressure: $P_{2}=\sqrt{P_{1} P_{3}}$.

OR

Fstimate the minimum work required to compress 1 kg of air from 1 bar and $27^{\circ} \mathrm{C}$ to 16 bar in two stages, if the law of compression is $\mathrm{PV}^{125}=\mathrm{C}$ and the inter-cooling is perfect. Take $-\mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}$.
Q. 5 (a) Define vacuum efficiency and condenser efficiency.
(b) Differentiate between jet and surface condensers.
(c) Write short note on cooling towers.
(d) Discuss the back pressure of steam condensers and its effect on power plant 07 performance.

OR

The following observations were recorded during a test of steam condenser.
Barometer reading $=760 \mathrm{~mm}$ of Hg ,
Vacuum at steam inlet to condenser $=690 \mathrm{~mm}$ of Hg ,
Hot well temperature $=32^{\circ} \mathrm{C}$,
Calculate the vacuum efficiency of the condenser.

ME-1843
 Examination-May-June - 2022
 B.Tech. IV Sem: Mechanical Engineering
 Theory of Machine - I

Time : 3 Hrs

Max. Marks: 70
Min. Marks : 22
Note: Total number of questions are 05. All Questions are compulsory. Each Question has 4 parts (a, b, c, d). Part a, b \& c are compulsory while Part d has internal Choice. Assume missing data, if any.
Word limit be observed as follows:
Part a - Max 50 words, Part b-Max 50 words,
Part c - Max 100 words and Part d - Max 400 words.
Word limit NOT to be followed for diagram, numerical, derivation.
Q. 1 (a) Define link and its types.
(b) What are different types of kinematic pairs?
(c) Find degree of freedom of a mechanism shown in fig.

(d) Explain with the help of neat sketch a quick return mechanism.

OR

Explain Oldham's coupling mechanism with neat sketch.
Q. 2 (a) Define instantaneous centre of rotation and its types. 02
(b) Write statement of Kennedy's theorem.
(c) Draw four bar mechanism and locate all I-Centers 03
(d) Find angular velocity of link $A B$

Find velocity of point D on slider

Q. 3 (a) What are important types of gears?
(b) Define module of gear.
(c) Find minimum number if teeth required in order to avoid interference on a pinion which is in mesh with gear to give a gear ratio of 3 .
(d) Fig. below shows an epicyclic gear train in which the arm C is rotating at 80 rpm anticlockwise. The arm carries two gears A and B having 32 and 40 teeth respectively. The gear A is fixed and the arm rotates about the center of gear A. Find the speed of gear B. what will be the speed of gear B if gear A instead of being fixed, makes 160 rpm clockwise.

OR

Two mating involute spur gears of 20° pressure angle have a gear ratio of 2 . The number of teeth on the pinion is 20 and its speed is 250 rpm . The module of the teedi is 12 mm . If the addendum on each wheel is such that the path of approach and the path of recess on each side are half the maximum possible length each, find:
(i) The addendum for pinion and gear wheel;
(ii) The length of arc of contact;
(iii)The maximum velocity of sliding during approach and recess.

Assume pinion to be driver.
Q. 4 (a) Define radial cam and offset in cam 02
(b) Name different types of motion a follower can have 02
(c) Differentiate between base circle and prime circle 03
(d) Draw cam profile of a cam to give following motion to reciprocating follower with a 07 knife edge follower:
(i) Follower to move outward through a distance of 40 mm during 120° of cam rotation
(ii) Follower to dwell for 30° of cam rotation
(iii) Follower to return to its initial position during 120° of cam rotation
(iv) Follower to dwell for the remaining 90° of cam rotation.

The minimum radius of cam is 25 mm . The outward and return strokes are to take place with simple harmonic motion.

OR

Calculate the maximum velocity and acceleration of the follower during the ascent and descent periods withfollowing data: Lift of follower 30 mm ; Follower lifts for 120° cam rotation; A dwell period of 30°; Follower lowers down during 150° cam rotation; The cam is rotating with 150 rpm .
Q. 5 (a) Define gyroscopic couple. 02
(b) State the effect of gyroscopic effect on aircraft when it takes left turn. Aircraft engine is rotating clockwise when viewed from rear.
(c) Explain gyroscopic effect naval ship in following during Pitching.
(d) An aero plane engine flying at $240 \mathrm{~km} / \mathrm{hr}$ turns towards left and completes a quarter circle of 60 m radius. The mass of the rotary engine and the propeller of the plane amounts to 450 kg with a radius of gyration of 320 mm . The engine speed is 2000 rpm clockwise when viewed from the rear. Determine the gyroscopic couple on the aircraft.

OR

Each wheel of a four-wheeled, rear engine automobile has a moment of inertia of 2.4 $\mathrm{kg} . \mathrm{m}^{2}$ and effective diameter of 660 mm . the rotating parts of the engine have a moment of inertia of $1.2 \mathrm{~kg} . \mathrm{m}^{2}$. The engine axis is parallel to the rear axel and the crank shaft rotates in the same direction as the road wheels. The mass of the vehicle is 2.200 kg and center of mass is 550 mm above the road level. The track width of the vehicie is 1.5 m . Determine the limiting speed of the vehicle around a curve with 80 m radius so that all the four wheel maintain contact with the road surface.

ME-1844
 Examination-May-June - 2022

 B.Tech. IV Sem: Mechanical Engineering

 B.Tech. IV Sem: Mechanical Engineering Machine Design - I

 Machine Design - I}
Time: 3 Hrs Max. Marks 70
Min. Marks 22
Note: Total number of questions are 05. All Questions are compulsory. Each Question has 4 parts (a, b, c, d). Part a, b\& c are compulsory while Part d has internal Choice. Assume missing data, if any.
Word limit be observed as follows:
Part a - Max 50 words, Part b-Max 50 words, Part c-Max 100 words and Part d-Max 400 words. Word limit NOT to be followed for diagram, numerical, derivation.
Q. 1 (a) What are the causes of the stress concentration? 02
(b) Explain methods for reduction in stress concentration? 02
(c) Draw S-N curve to explain endurance limit and fatigue life. Also describe low cycle and 03high cycle fatigue on the basis of S-N curve?
(d) Write a comparative note on static failure versus fatigue failure. Draw a schematic diagram for fatigue crack growth and describe various stages of fatigue crack propagation?

OR

A 40 mm diameter shaft is made of steel 50 C 4 (Sut $=660 \mathrm{~N} / \mathrm{mm} 2$) and has a machined surface. The expected reliability is 99%. The theoretical stress concentration factor for the shape of the shaft is 1.6 and the notch sensitivity factor is 0.9 . Determine actual endurance limit of the shaft, if surface finish factor (Ka) is 0.76 , size factor (Kb) is 0.85 and reliability factor (Kc) is 0.814 .
Q. 2 (a) Explain the ASME code for the designing of shafts? 02
(b) Explain the advantages of hollow shaft over solid shaft? 02
(c) For a square key, derive the relationship between compressive strength and shear 03 strength?
(d) Explain the design procedure for a solid shaft and hollow shaft based on torsional rigidity?
ORA Shaft made of mild steel is required to transmit 100 KW at 300 RPM . The supportedlength of the shaft is 3 meters. It carries two pulleys each weighing 1500 N supported ata distance of 1 metre from the ends respectively. Assuming the safe value of stress,determine the diameter of the shaft.
Q. 3 (a) Describe the condition of surge in helical spring? 02
(b) Explain the series and parallel connection of helical springs? 02
(c) Design considerations in design of simple screw jack? 03
(d) Derive the load-stress and load-deflection equations for design of helical spring. Also, briefly explain the trial and error method of design of helical spring?

OR

A coil spring is used for the front suspension of an automobile. The spring has a stiffiness of $90 \mathrm{~N} / \mathrm{mm}$ with squared and ground ends. The material used is oil tempered chrome steel for which the permissible shear stress may be taken as 500 MPa . The load on the spring is causing a total deflection of 8.5 mm . Find the spring wire diameter and total number of turns using a spring index of 6 .
Q. 4 (a) Differentiate between single plate and multi-plate clutch? 02
(b) List the factors to be considered for designing of friction clutch? 02
(c) For a block brake with short shoe, explain the conditions of self-energizing, self-locking and grabbing of brake?
(d) For a worn-out clutch, derive the equation for torque transmitting capacity?

OR

A single plate clutch consists of one pair of contacting surfaces. The inner and outer diameters of the friction disk are 125 and 250 mm respectively. The coefficient of friction is 0.25 and the total axial force is 15 kN . Calculate the power transmitting capacity of the clutch at 500 rpm using: (i) uniform wear theory; and (ii) uniform pressure theory.
Q. 5 (a) Define wear and explain the function of lubricants along with their types? 02
(b) Explain the load-life relationship for rolling contact bearings? 02

(c) Define thick film and thin film lubrication and also explain the McKee's investigation
for the journal bearing?

(d) Define the static load carrying capacity of rolling contact bearing and derive the
Stribeck's Equation?

OR

A ball bearing is subjected to a radial force of 2500 N and an axial force of 1000 N . The dynamic loadcarrying capacity of the bearing is 7350 N . The values of X and Y factors are 0.56 and 1.6 respectively. The shaft is rotating at 720 rpm . Calculate the life of the bearing in hours of service, if the race-rotation factor (V) is unity.
\qquad
1845/2045

Examination-May-June - 2022

B.Tech. IV Sem: ME, EE, EC, AI

Engineering Mathematics - III
Time: 03:00 Hrs
Note: Total number of questions are 05. All Questions are compulsory. Each Question has 4 parts (a, b, c, d). Part a, b \& c are compulsory while Part d has internal Choice. Assume missing data, if any. Word limit be observed as follows:
Part a - Max 50 words, Part b-Max 50 words,
Part c - Max 100 words and Part d - Max 400 words.
Word limit NOT to be followed for diagram, numerical, derivation.
Q. 1 (a) Define Periodic Function and Fourier series.
(b) Write the Euler's Formula for $\mathbf{a}_{0}, a_{n}, b_{n}$.
(c) Find the Fourier series for the function $f(\mathbf{x})=\mathbf{x}-\mathbf{x}^{2},-\mathbf{1}<\mathbf{x}<\mathbf{1}$.
(d) Obtain the Fourier series for the function $\mathbf{f}(\mathbf{x})=\mathbf{x}^{2},-\pi \leq \mathbf{x} \leq \pi$. Hence show that $1 / 1^{2}+1 / 2^{2}+1 / 3^{2}+---=\pi^{2} / 6$.

OR

If $f(x)=x, 0<x<\pi / 2$

$$
\pi-\mathbf{x}, \pi / 2<\mathbf{x}<\pi
$$

Show that $f(x)=(4 / \pi)\left[\sin x-\sin 3 x / 3^{2}+\sin 5 x / 5^{2}+\cdots---\right]$
Q. 2 (a) Write the Laplace Transform of following elementary functions
(i) $\mathbf{L}\{\mathbf{1}\}$
(ii) $\mathbf{L}\left\{\mathrm{e}^{\mathrm{at}}\right\}$
(iii) $\mathbf{L}\{\sin \mathbf{a t}\}$
(iii) $\mathbf{L}\{\cos \mathbf{a t}\}$.
(b) Find the Laplace transform of $\boldsymbol{\operatorname { s i n }} \mathbf{a t / t}$.
(c) Find the inverse Laplace Transform of $(\mathbf{p}+\mathbf{8}) /\left(\mathbf{p}^{2}+\mathbf{4 p}+\mathbf{5}\right)$.
(d) State the convolution theorem and using the convolution theorem evaluate

$$
\int_{0}^{t} \sin u \cos (t-u) d u
$$

OR

Solve the equation using Laplace Transform

$$
\frac{d^{3} y}{d t^{3}}+2 \frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}-2 y=0, \text { where } y=1, \frac{d y}{d y}=2, \frac{d^{2} y}{d t^{2}}=2 \text { at } t=0
$$

Q. 3 (a) Prove that $\boldsymbol{e}^{\boldsymbol{x}}=\left(\frac{\Delta^{2}}{E}\right) e^{x} \cdot \frac{E e^{x}}{\Delta^{2} e^{x}}$
(b) Find the missing term in the table:

x	$: 45$	50	55	60	65
y	$: 3$	-	2	-	-2.4

(c) From the table estimate the number of students who obtained marks between 40 and 45

| Marks : | $\mathbf{3 0 - 4 0}$ | $\mathbf{4 0 - 5 0}$ | $\mathbf{5 0 - 6 0}$ | $\mathbf{6 0 - 7 0}$ | $\mathbf{7 0 - 8 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Students: | $\mathbf{3 1}$ | $\mathbf{4 2}$ | $\mathbf{5 1}$ | $\mathbf{3 5}$ | $\mathbf{3 1}$ |

(d) Find by Gauss's backward formula the sales of a concern for the year 1936, given that
$\begin{array}{llllllll}\text { Year : } & 1901 & 1911 & 1921 & 1931 & 1941 & 1951\end{array}$
Sales (in lacs) : $\begin{array}{lllllll}12 & 15 & 20 & 27 & 39 & 52\end{array}$
OR
When do we apply Lagrange's interpolation formula? Find the cubic Lagrange's interpolating polynomial from the following data:

$$
\begin{array}{cccccc}
x & : & 0 & 1 & 2 & 5 \\
f(x) & : & 2 & 3 & 12 & 147
\end{array}
$$

Q. 4 (a) "It may be observed that any error in approximating a function are amplified while taking the derivative whereas they are smoothed out in integration ";
So what do you think that the numerical differentiation should be avoided if an alternate exists? Clarify it in your words (Max word limit 50).
(b) The table given below reveals the velocity ' \mathbf{v} ' of a body during the time ' t ' specified.02 Find its acceleration at $\mathbf{t}=\mathbf{1 . 1}$.

$$
\begin{array}{lllllll}
\mathrm{t} & : & 1.0 & 1.1 & 1.2 & 1.3 & 1.4 \\
\mathrm{v} & : & 43.1 & 47.7 & 52.1 & 56.4 & 60.8
\end{array}
$$

(c) Write the Newton Cotes Quadrature formula. Taking the values $\mathbf{n}=\mathbf{1}, \mathbf{2}, \mathbf{3} \& 6$ respectively which formulae will evolve, write those formulae along with their specific names.
(d) Evaluate $\int_{0}^{6} d \boldsymbol{x} /\left(1+\boldsymbol{x}^{\mathbf{2}}\right)$ by using
(i) Trapezoidal Rule (ii) Simpson's three-eight rule.

OR

What do you mean by the Direct methods and iterative methods for solving 07 Simultaneous Algebraic Equation? Solve the system of equations

$$
\begin{aligned}
& 3 x+y-z=3 \\
& 2 x-8 y+z=-5 \\
& x-2 y+9 z=8
\end{aligned}
$$

Using Gauss-elimination method.
Q. 5 (a) What do you mean by Initial Value Problem and Boundary Value Problem?
(b) Obtain Picard's second approximate solution of the initial value problem

$$
\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1}, y(0)=0
$$

(c) Using Euler's method, solve for y at $x=0.1$ from $\frac{d y}{d x}=x+y+x y, y(0)=1$ taking step size $\mathbf{h}=\mathbf{0 . 0 2 5}$.
(d) Solve $\frac{d y}{d x}=y-\frac{2 x}{y}, y(0)=1$ in the range $0 \leq \mathbf{x} \leq 0.2$ using modified Euler's method. Take $\mathbf{h}=\mathbf{0 . 1}$.

OR

Using Runge - Kutta method of fourth order solve for $\mathbf{y}(\mathbf{0 . 1}), \mathbf{y}(\mathbf{0 . 2}), \mathbf{y}(\mathbf{0 . 3})$ given 07 that

$$
\frac{d y}{d x}=x y+y^{2}, \quad y(0)=1
$$

