Samrat Ashok Technological Institute, Vidisha <u>Department of Mechanical Engineering</u> Lecture Plan								
Course Name:	Heat and Mass Transfer	Academic Year :	August-Dec. 2023 / ODD Sem					
L – T– P:	3-1-2	Credit :	4					
Course Detail :	Theory and Practical	Term Start Date :	24.07.2023					
Course Coordinator:	Dr. Mangal Singh Lodhi	Term End Date :	-					
Contract hours per week :	4	Total number of hours:	40					

Sr. No.	Units/Topics	Course contents/Subtopic	Hours alloated	Actual date	Teaching aid code	Remarks
	Basic Concepts	Modes of heat transfer, Fourier's law, Newton's law, Stefan Boltzman law	1			
01		Thermal resistance and conductance, Analogy between flow of heat and electricity	1			
	Steady State Conduction	Derivation of Fourier heat conduction equation, its forms in rectangular, cylindrical and spherical coordinates	2			
		Linear one dimensional steady state conduction through a slab, tubes, spherical shells	2			
		Critical thickness of insulation for pipes, effect of variable thermal conductivity	2			
02	Extended Surfaces (Fins)	Heat transfer from a straightand annular fin (plate) for a uniform cross section	1			
		Error in measurement of temperature in a thermometer well	2			
		Fin efficiency, fin effectiveness, applications of fin	1			
	Unsteady Heat Conduction	Transient and periodic conduction, Heating and cooling of bodies with known temperatures distribution	2			
		Systems with infinite thermal conductivity, response of thermocouples	2			
	Convection	Introduction, free and forced convection	1			
		Principle of dimensional analysis, Buckingham 'pie' theorem	2			
03		Application of dimensional analysis of free and forced convection	1			
00		Empirical correlations for laminar and turbulent flow over flat plate & tubular geometry	2			
		Calculation of convective heat transfer coefficient using data book	2			
	Heat Exchangers	Types: Parallel flow, counter flow; evaporator and condensers, Overall heat transfers coefficient, fouling factors	2			
		Method of heat exchanger analysis, LMTD method	2			
04		Effectiveness of heat exchanger, NTU method	2			
	Mass transfer	Fick's law, equi-molar diffusion, diffusion coefficient	1			
		Analogy with heat transfer, diffusion of vapour in a stationary medium	1			
05	Thermal Radiation	Nature of radiation, emissive power, absorption, transmission, reflection and emission of radiation, Laws of thermal radiation	2			
		Radiation from real surfaces, Radiation heat exchange between black and gray surfaces	2			
		Shape factor, analogical electrical network, radiation shields	2			
	Boiling and Condensation	Film wise and drop wise condensation; Nusselt theory for film wise condensation on a vertical plate	1			
		Boiling heat transfer phenomenon, regimes of boiling, boiling correlations	1			

	Teaching aid code:		
1.	White Board		
2.	LCD/Overheaded Projector		(DA) and we the
3.	Model/ Charts	Signature of Teacher:	() y Gerui
4.	Powerpoint Presentation/ Video		
Less	sion Planning, Revision no. 01		

Reference/Text Books:

- 1. SOM SK; Introduction to Heat Transfer; PHI
- 2. Dewitt Incropera, Fundamentals of Heat and Mass Transfer; Wiley
- 3. Sachdeva RC; Fundamentals of Engineering Heat and Mass Transfer; New Age
- 4. Holman JP; Heat transfer; TMH
- 5. Sukhatme SP; Heat and Mass Transfer; University Press Hyderabad
- 6. Kumar DS; Heat and Mass Transfer; SK Kataria and Sons Delhi