Samrat Ashok Technological Institute, Vidisha									
Department of Mechanical Engineering									
Lecture Plan									
Course Code:	ME-1873 (E-VI) (D)	Year/Semester :	BE IV th Year/ 7 th Semester						
Course Name:	Jet propulsion & rocketry	Academic Year :	2023/ ODD						
L – P:	3	Credit :	3						
Course Detail :	Theory	Term Start Date :	24/07/2023						
Course Coordinator:	Dr. Gopal Kumar Deshmukh	Term End Date :							

Academic Year: 2023							
Name of Teacher: Dr. Gopal Kumar Deshmukh							
Subject: Jet propulsion & rocketry							
Theory/	Tutorial: Theory						
Sr. No.	Name Of Unit/Topics		Actual Date	Teaching Aid Code	Remarks		
01	Unit: 1- Motion in Space-Requirements of Orbit:						
	Introduction, Motion of Bodies in Space and Laws of Motion; Parameters describing Motion of Bodies,	2		2 & 4			
	Newton's laws of Motion, Universal Law of Gravitational Force, Gravitational Field; Requirements for Motion in Space,	2		2 & 4			
	Requirements for Motion in Space, Geosynchronous and Geostationary Orbits, Eccentricity and Inclination of Orbits,	2		2 & 4			
	Energy and Velocity Requirements to reach a Particular Orbit;	2		2 & 4			
	Escape Velocity, Freely Falling Bodies, Means of Providing the Required Velocities, small problems.	2		2 & 4			
02	Unit: 2- Theory of Rocket Propulsion:						
	Illustration by an Example of Motion of Sled Initially at Rest,	2		2 & 4			
	Motion of Giant Squid in Deep Seas; Rocket Principle and the Rocket Equation,	1		2 & 4			
	Mass Ratio of a Rocket, Desirable Parameters of a Rocket, Propulsive Efficiency of a Rocket,	2		2 & 4			
	Performance Parameters of a Rocket, Staging and Clustering of Rockets, Classification of Rockets, problems.	2		2 & 4			
	Unit: 3- Rocket Nozzle and Performance:						
03	Expansion of gas from a high pressure chamber, Shape of the Nozzle area Ratio, Performance loss in a conical Nozzle,	2		2 & 4			
	Flow seprtatin in nozzles Contour or Bell Nozzles, Unconventional Nozzles Mass Flow rates and characteristic Velocity,	2		2 & 4			
	Thrust developed by a Rocket; Thrust Coefficient Efficiencies, Specific Impulse and Correlation with C* and CF General Trends.	2		2 & 4			
04	Unit: 4- Chemical Propellants and Solid Propellant Rockets:						
	Chemical Propellants: Small Values of Molecular Mass and						
	Specific Heat Ratio, Energy Release during Combustion of	2		2 & 4			
	Criterion for Choice of Propellants, Solid Propellants, Liquid	2		2 & 4			

	Propellants, Hybrid Propellants				
	Solid Propellant Rockets: Mechanism of Burning and Burn Rate, Choice of Index n for Stable Operation of Solid Propellant		2 &		
				2&4	
	Rockets, Propellant Grain Configuration				
	Ignition of Solid Propellant Rockets, Pressure Decay in the				
	chamber after propellant Burns Out, Action time and Burn	2		2 & 4	
	Time, Factors influencing Burn Rate Components of a Solid	2			
	Propellant Rocket.				
	Unit: 5- Liquid Propellant Rockets and Liquid Monopropellant				
	rockets:				
	Liquid Propellant Rockets: Propellant Feed system, Thrust				
	Chamber, Performance and Choice of Feed System Cycle,	2		2&4	
05	Turbo-pumps,				
	Gas requirements for draining of propellants from storage				
	tanks, drainingunder microgravity conditions, Complexity of	3		2 & 4	
	Liquid Propellant Rockets and simulation, Trends in the				
	development of liquid propellant rockets.				
	Liquid Monopropellant rockets: Hydrazine, Monopropellant	2		2 & 4	
	rockets, Catalyst bed loading, Performance and applications	2			
	Teaching Aid Code:				
1	White board				
2	L.C.D/overhead PROJECTOR	Sign of Teacher:			
3	MODEL & CHART				
4	PPT & VIDEO				
LESSON P	PLANNING, Rev. no. :				

Reference Books:

- 1. Barrere, M., Rocket Propulsion, Elsevier Pub. Co., 1990.
- 2. Sutton, G. P., Rocket Propulsion Elements, John Wiley, New York, 1993.
- **3.** Ramamurthi K., Rocket Propulsion, Macmillan Publishers India Ltd., 2010.
- 4. Feedesiev, V. I. and Siniarev, G. B., Introduction to Rocket Technology, Academic Press, New York, 2000.
- 5. Sarvanamuttoo, H.I.H., Rogers, G. F. C. and Cohen, H., Gas Turbine Theory, 6th Edition, Pearson Prentice Hall, 2008.