Samrat Ashok Technological Institute, Vidisha				
	Department of Mechanical Engineering			
Lecture Plan				
Course Code:	ME-1182	Year/Semester :	BE final year/VII sem	
Course Name:	Refrigeration & Air-conditioning	Academic Year :	August-2023/ ODD	
L – P:	3 – 2	Credit:	4	
Course Detail :	Theory and Practical	Term Start Date :	24-07-2023	
Course Coordinator:	Sanjay katarey	Term End Date:		
	Kamlesh Sharma			

UNIT I

Objectives: 1.To understand principles and systems of producing refrigeration.

- 2. To understand unit of refrigeration, refrigerator, heat engine, heat pump.
- 3.To analyze air refrigeration system cycle and formulate and solve numerical problems.

SN	Lecture	Topics covered	Remark
1	1	History, principles of refrigeration	
2	2	principles of refrigeration	Continue from lecture 1.
3	3	Refrigerator, Heat Engine, Heat Pump, COP	
4	4	Numerical Problems	Continued from lecture 3.
5	5	Air Refrigeration Systems, Carnot Cycle	
6	6	Joule cycle, Boot strape Cycle, Reduced Ambient Cycle	
7	7	Regenerative Cycle, Numerical Problems	Based on lecture 5 and 6.
8	8	Numerical Problems Continue,	
9	9	Tutorials, Problem solving session.	

UNIT II

Objectives: 1.To understand vapor compression refrigeration systems

- 2.To estimate effect of various parameters on the performance of the cycle.
- 3. To demonstrate the cycle on TS and PH plane and solve numerical problems.

SN	Lecture	Topics covered	Remark
1	10	Vapor compression cycle, TS and PH diagram	
2	11	Theoretical and practical cycle, sub cooling and super	

		heating	
3	12	Effect of pressure on COP, multy pressure system	
4	13	Multiple compression and expansion, intercooling	
5	14	Low temperature refrigeration , cryogenics	
6	15	Production of low temperature, dry ice, cascade system	Continue from lecture 14.
7	16	Numerical problems using charts and tables.	Based on lecture 10, 11,12.
8	17	Tutorials.	

UNIT III

Objectives: 1.To understand principle and working of Vapor Absorption and steam jet refrigeration system.

2.To understand different types of refrigerants their property and applications, environmental friendly refrigerants.

SN	Lecture	Topics covered	Remark
1	18	Vapor Absorption System, Theoretical and practical system	
2	19	Aqua-ammonia, Electrolux and other systems	
3	20	Steam jet refrigeration system, principle	
4	21	Cycle of operation, working	Continue from lecture 20.
5	22	Refrigerants-nomenclature, classification, desirable	
		properties	
6	23	Common refrigerants, comparison, leak detection	
7	24	Environmental friendly refrigerants, refrigerant mixture	
8	25	Brian and its properties, latest trends in refrigerants	Continue from lecture 24.

UNIT IV

Objectives: 1.To understand air-vapor mixture, its properties, psychrometric charts

- 2. To understand air-conditioning system, human comfort, chart and regulation of human body.
- 3. To calculate psychrometric properties in different processes, simple load calculation.

SN	Lecture	Topics covered	Remark
1	26	Air vapor mixture its properties, psychrometric chart	
2	27	Calculation of the properties using charts and tables	
3	28	Psychrometric processes, mixing of air stream, SHF	
4	29	Principle of air-conditioning, human body and comfort	
5	30	Requirment, ventilation, infiltration	Continue from lecture 29.
6	31	Different heating/cooling load, bypass factor	
7	32	Effective temperature and chart,	
8	33	Numerical problems	
9	34	Tutorials	Continue from lecture 33.

UNIT V

Objectives: 1.To calculate winter and summer air conditioning load.

- 2. To understand and calculate RSHF,GSHF, BPF and supply air requirement
- 3. To understand air distribution and ventilation system and air-conditioning equipments.

SN	Lecture	Topics covered	Remark
1	35	Calculation of summer and winter air conditioning load	
2	36	Calculation of supply air and its condition	
3	37	RSHF,GSHF, bypass factor,ESHF	
4	38	Numerical problem solving	Based on lecture 35-38.
5	39	Air distribution and ventilation system	
6	40	Air conditioning equipments	
7	41	Cryogenic and other HVAC technologies	