

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal) DEPARTMENT OF CSE

Semester/Yo	ear	IV/II	Prog	Program			B.Te	B.Tech – CSE(Blockchain)					
Subject Category	DC	Subject Code:	BC-4	BC-401		01 Subject Name		Computer Network					
Maximum N	Marks Al	lotted							tact H		Total		
Theory				Prac	tical		Total	Com	iaci no	burs	Credits		
ES	MS	Assignment	Quiz	ES	LW	Quiz	Marks	L	T	P			
60	20	10	10	30	10	10	150	3	0	2	4		

Prerequisites:

Fundamental knowledge of analog and digital communication.

Course Objective:

- Have fundamental knowledge of the various aspects of computer networking and enables students to appreciate recent developments in the area.
- Be familiar with various types of computer networks.

• Understand the concepts of Network Layer ,Transport Layer, Application Layer

UNITs	Descriptions	Hrs.
I	Computer Network: Definitions, goals, components, structure, Architecture, Classifications & types, Growth, Complexity and applications etc. Layered Architecture: Protocol hierarchy, Connection Oriented & Connectionless Services, Service primitive Design issues & its functionality. ISO-OSI Reference Model: Principle, Model, Descriptions of various layers and its comparison with TCP/IP. Network standardization	8
II	Transmission Media, Sources of transmission impairment. Network Topology: Mesh, Bus, Star, Ring, Tree, etc. Standards Connecting Devices: Active and Passive Hubs, Repeaters, Bridges, Two & Three layer switches & Gateway.	8
III	Data Link Layer: Need, Services Provided, Framing & its methods, Flow Control, Error control. DLL Protocol: Elementary & Sliding Window. Piggybacking & Pipelining. MAC Sub layer: Static & Dynamic channel allocation, Media access control for LAN & WAN.Collision free & limited contention protocolALOHA: pure, slotted CSMA, CSMA/CD,CSMA/CA, IEEE 802 standards for LAN & MAN & their comparison.	8
IV	Network Layer: Need, Services Provided, Design issues, Routing algorithms: Least Cost Routing algorithm, Dijkstra's algorithm, Bellman-ford algorithm, Hierarchical Routing, Broadcast Routing, Multicast Routing, Routing Strategies, Congestion Control Algorithms: General Principles of Congestion control, Prevention Policies, Congestion Control in Virtual-Circuit Subnets, Congestion Control in Datagram subnets.Comparison of IPv4 & IPv6, Mobile IP.	8
V	Processes to Processes Delivery: Transmission Control Protocol (TCP) – User Datagram Protocol, Data Traffic, Congestion Control and Quality of Service, Techniques to improve QOS, Integrated Services, and Differentiated Services, DNS, SMTP, FTP, HTTP, WWW, Virtual Terminal Protocol, VoIP: Basic IP Telephone System.	8
Total Ho	urs	40

Course Outcomes:

- CO1: Develop a fundamental understanding of network design principles and structure of computer network.
- CO2: Explain the importance of data communications, how communication works in data networks and the internet, recognize the different internetworking devices and their functions.
- CO3: Explain the role of protocols in networking, Analyze the role and services and features of the various layers of data networks.
- CO4: Analyze the features and operations of various routing protocols such as Bellman-ford algorithm, Hierarchical Routing, Broadcast Routing, Multicast Routing.
- CO5: Describe and examine working of Transport Layer and Application Layer protocol.

Text Book

- 1. Tanenbaum A. S, "Computer Networks", Pearson Education, 4th Edition
- 2. William Stallings, "Data and Computer Communications", PHI 6th Edition .

Reference Books-

- 1. Douglas E. Comer ,"Computer Network & Internet", Pearson Education, 6th Edition.
- 2. Behraj A Forouzan,"Data Communication & Networking", McGraw-Hill,4th edition.
- 3. Natalia Olifar& Victor Olifer,"Computer Networks", Willey Pub.
- 4. Prakash C. Gupta, "Data Comunications and Computer Networks", PHI,2end edition.
- 5. Gallo,"Computer Communication & Networking Technologies", Cengage Learning.1st edition.

List/Links of e-learning resource

https://nptel.ac.in/courses/106105081

Modes of Evaluation and Rubric

The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end semester theory and practical examination.

CO-PO Mapping:

COs	PO_1	PO_2	PO ₃	PO ₄	PO ₅	PO_6	PO ₇	PO ₈	PO ₉	PO_1	PO ₁₁	PO ₁₂	PSO1	PSO2
CO-1	3	2											3	
CO-2	3	3			1								2	
CO-3	3	3	1		1							3		3
CO-4	3	3	2	1								1		3
CO-5	3	3										1	2	

Suggestive list of experiments:

- 1. Study of different types of Network cables and practically implement the cross-wired cable and straight through cable using clamping tool.
- 2. Study of Network Devices in detail.
- 3. Demonstrate single parity bit for error detection.
- 4. To understand error detection and correction technique Implement hamming code.
- 5. To understand error detection technique Implement CRC.
- 6. To understand working of framing method Implement bit stuffing with start and end flag.
- 7. To understand farming methods implement character count farming method.
- 8. To study and understand network IP.
- 9. Connect the computer in local Area Network.

Recommendation by Board of studies on	
Approval by Academic council on	
Compiled and designed by	
Subject handled by department	Department of CSE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal) DEPARTMENT OF CSE

Semester/Ye	ear	IV/II		Program			B.Tecl	ech – CSE(Blockchain)				
Subject Category	DC	Subject Code:	ВС	- 402		bject ame	Databas	Database Management System				
	Maximum Marks Allotted							Cont	act H	OTTMG	Total	
	T	heory			Practio	cal	Total	Cont	act no	burs	Credits	
ES	MS	Assignment	Quiz	Quiz ES		Quiz	Marks	L	T	P		
60	20	10	10	30	10	10	150	3	0	2	4	

Prerequisites:

Basic Knowledge of Mathematics and Programming

Course Objective:

- To understand the different issues involved in the design and implementation of a database system.
- To represent a database system using ER diagrams and to learn normalization techniques
- To learn the fundamentals of data models, relational algebra, and SQL.
- To understand the basic issues of transaction processing and concurrency control.
- To become familiar with database storage structures and access techniques

UNITs	Descriptions	Hrs.
I	Introduction: Purpose of Database System — Views of data — data models, database management system, three-schema architecture of DBMS, components of DBMS. E/R Model - Conceptual data modeling - motivation, entities, entity types, attributes relationships, relationship types, E/R diagram notation, examples.	6
II	Relational Model: Relational Data Model - Concept of relations, schema-instance distinction, keys, referential integrity and foreign keys, relational algebra operators, SQL - Introduction, data definition in SQL, table, key and foreign key definitions, update behaviors. Querying in SQL, notion of aggregation, aggregation functions group by and having clauses.	8
III	Database Design: Dependencies and Normal forms, dependency theory - functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers, definitions of 1NF, 2NF, 3NF and BCNF, decompositions and desirable properties of them, algorithms for 3NF and BCNF normalization, 4NF, and 5NF.	9
IV	Transactions: Transaction processing and Error recovery - concepts of transaction processing, ACID properties, concurrency control, locking based protocols for CC, error recovery and logging, undo, redo, undo-redo logging and recovery methods.	9
V	Implementation Techniques: Data Storage and Indexes - file organizations, primary, secondary index structures, various index structures - hash-based, dynamic hashing techniques, multi-level indexes, B+ trees.	8
Total Hours	<u> </u>	40

Course Outcomes:

- **CO-1**: Understand the basic concepts, principles and applications of database systems.
- CO-2: Discuss the components of DBMS, data models, Relational models.
- **CO-3**: Use knowledge to find the functional dependencies and differentiate between different normal forms.
- CO-4: Execute transaction concepts and concurrency protocols
- **CO-5**: Articulate the basic concept of storage and access techniques.

Text Book

- 1. RamezElmasri and Shamkant B. Navathe, Fundamentals of Database Systems, Pearson Education
- 2. Silberschatz, Korth, "Data base System Concepts", 7th ed., McGraw hill.

Reference Books-

- 1. C. J. Date, "An Introduction to Database Systems", 8th ed., Pearson.
- 2. Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems McGraw Hill.
- 3. Peter Rob and Carlos Coronel, Database System- Design, Implementation and Management ,Cengage Learning.

List/Links of e-learning resource

- https://nptel.ac.in/courses/106/104/106104135/
- https://nptel.ac.in/courses/106/106/106106220

Modes of Evaluation and Rubric

The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end semester theory and practical examination.

CO-PO Mapping:

COs	PO_1	PO_2	PO ₃	PO ₄	PO ₅	PO_6	PO ₇	PO ₈	PO ₉	PO ₁	PO ₁₁	PO ₁₂	PSO1	PSO2
CO-1	1	1	2										1	2
CO-2	3	2	2										1	2
CO-3	2	1	2		2								1	2
CO-4	2	1	2											2
CO-5	2	2	2											1

Suggestive list of experiments:

- 1. Design a Database and create required tables. For e.g. Bank, College Database
- 2. Apply the constraints like Primary Key, Foreign key, NOT NULL to the tables
- 3. Write a sql statement for implementing ALTER, UPDATE and DELETE
- 4. Write the queries to implement the joins
- 5. Write the query for implementing the aggregate functions
- 6. Write the query to implement the concept of Integrity constraints
- 7. Write the query to create the views
- 8. Perform the queries with group by and having clauses
- 9. Perform the following operation for demonstrating the insertion, updation and deletion using the referential integrity constraints

10. Write the query for creating the users and their role

Recommendation by Board of studies on	
Approval by Academic council on	
Compiled and designed by	
Subject handled by department	Department of CSE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Bachelor of Technology B.Tech in CSE (Blockchain Technology)

Semester/Ye	ear	IV/II	Prog	Program			B.Tec	B.Tech – CSE(Blockchain)				
Subject Category	DC	Subject Code:	BC-4	03		bject ame	Foundation	ation of Blockchain technolog				
		Maximum	Marks A	larks Allotted				Cont	act H	OTTMG	Total	
	T	Cheory			Practio	cal	Total	Com	act no	ours	Credits	
ES	MS	Assignment	Quiz	Quiz ES		Quiz	Marks	L	T	P		
60	20	10	10	30	10	10	150	3	0	2	4	

Prerequisites:

Basic Knowledge of mathematics.

Course Objective:

- Technology behind blockchain
- Emerging trends in blockchain.
- Real-world applications of block chain

UNITs	Descriptions	Hrs.
	Introduction to Blockchain Technology: Basic ideas behind block chain, how it is changing the	
I	landscape of digitalization, introduction to cryptographic concepts, Hashing, public key	8
	cryptosystems, private vs public block chain and use cases, Hash Puzzles	
	Blockchain Fundamentals: Basic architecture of Blockchain, different terminologies	
II	associated, Characteristics of Block chain, Types of networks, Introducing Smart contract	8
	concept in Blockchain.	
III	Components of Blockchain: Core components of Blockchain, Types of Block chains;	8
111	Blockchain Protocol, Permission & Permission less Block chains,	8
	Digital Ledger: Short History of Money and Trust, Bitcoin Mechanics, Introduction to	
	Ethereum, Introduction to Hyperledger, Hyperledger Fabric and its architecture, Hyperledger	
IV	Composer	8
	Emerging Trends in Blockchain: Cloud-based block chain, Multi chain, Geth, Stellar, Ripple,	
	R3 Corda, Blockchain API, Blockchain Sandboxes	
	Block Chain Use Cases: Supply Chain Management, Finance, Health Care, Internet of Things	
V	(IoT), Remittance, Land Records, Voting and election, Loyalty Programs, Go Green	8
	(Renewable Energy)	
Total Ho	urs	40

Course Outcomes:

- CO-1: Understand the basic concepts, principles and applications of block chain.
- CO-2: Understand basic architecture of Block chain, Characteristics of Block chain.
- CO-3: Explain Core components of Block chain, Types of Block chains; Blockchain Protocol.
- CO-4: Compare the working of different block chain platforms.
- CO-5: Analyse the importance of block chain in finding the solution to the real-world problems.

Text Book

- 1. Artemis Caro, "Blockchain: The Beginners Guide to Understanding the Technology BehindBitcoin& Crypto currency".
- 2. Scott Marks, "Blockchain for Beginners: Guide to Understanding the Foundation and Basics of the Revolutionary Blockchain Technology", Create Space Independent Publishing Platform.

Reference Books-

- 1. Mark Watney, "Blockchain for Beginners".
- 2. Alwyn Bishop, "Blockchain Technology Explained".

List/Links of e-learning resource

• https://nptel.ac.in/courses/106105235

Modes of Evaluation and Rubric

The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end semester theory and practical examination.

CO-PO	Mappir	ıg:												
COs	PO_1	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	PO ₁₁	PO ₁₂	PSO1	PSO2
CO-1	3	1											3	3
CO-2	3	1											1	3
CO-3	3	2											2	1
CO-4	3	3	2											3
CO-5	3	3	2										3	

Suggestive list of experiments:

- 1. Study of bitcoin and P2P Payment gateway.
- 2. Study of Hyperledger Architecture and its features.
- 3. Create a simple Ethereum network model.
- 4. Write a simple chaincode API model.
- 5. Generate the crypto material for the various participants in the bootstrapping network.
- 6. Generate the genesis block for the Orderer node and start ordering service (solo node) in the bootstrapping network.
- 7. Generated the configuration transaction block to create a new channel in the bootstrapping network.
- 8. Sign the configuration block and create the new channel.
- 9. Make peers of all the organizations join the channel that we created in the bootstrapping network.

10. Study of Hyperledger Explorer and Hyperledger Composer Solution.

Recommendation by Board of studies on	
Approval by Academic council on	
Compiled and designed by	
Subject handled by department	Department of CSE

(Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal) DEPARTMENT OF CSE

Semester/Ye	ear	IV/II		Pro	gram		B.Tech – CSE(Blockchain)					
Subject Category	DC	Subject Code:	ВС	BC-404		bject ame	Soft	tware E				
		Maximum			Cont	oot II	01110	Total				
	T	Cheory		Practical		cal	Total	Com	act H	ours	Credits	
ES	MS	Assignment	Quiz	Quiz ES		Quiz	Marks	L	T	P		
60	20	10	10				100	3	1	0	4	

Prerequisites:

Fundamental knowledge of system, analysis and design

Course Objective:

- To introduce students to the basic concepts, testing techniques and applications of Software Engineering.
- To provide a brief, hands-on overview of software development life cycle.
- Develop and write a software project proposal.
- Develop and write a Software Requirements Specification.
- To understand and apply the various phases of software development like information gathering, feasibility, Process model, analysis, design, Estimations, quality, risk, maintenance, reengineering.

UNITs	Descriptions	Hrs.
I	Introduction to Software and Software Engineering The Evolving Role of Software, Software: Software Myths, Software Engineering: A Layered Technology, Software Process Models, The Linear Sequential Model, The Prototyping Model, The RAD Model, Incremental Model, Spiral, Evolutionary Process Models, Agile Process Model, Component-Based Development, the capability maturity model integration (CMMI), ISO 9000 Models.	8
II	Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document. Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management. System models: Context models, behavioral models, data models, object models, structured methods.	8
III	Software Project Planning, Design Methodologies and Software Metrics, Software Project Planning: Project planning objectives, Decomposition Techniques, Empirical estimation models, Software Project Estimation Models, CPM/PERT. Design concept: Design Principles, Abstractions, refinement modularity, effective modular design, Cohesion & Coupling, Design notation, and specification, structure design methodologies, & design methods. Software Measurement and Metrics: Various Size Oriented Measures: Halestead's Software Science, Function Point (FP) Based Measures, Cyclomatic Complexity Measures: Control Flow Graphs.	8
IV	Software Testing, Testing Objectives, Unit Testing, Integration Testing, Acceptance Testing, Regression Testing, Testing for Functionality and Testing for Performance, Top-Down and Bottom-Up Testing Strategies: Test Drivers and Test Stubs, Structural Testing (White Box Testing), Functional Testing (Black Box Testing), Test Data Suit Preparation, Alpha and Beta Testing of Products. Static Testing Strategies: Formal Technical Reviews (Peer Reviews), Walk Through, Code Inspection, Compliance with Design and Coding Standards.	8
V	Software Maintenance and Software Reengineering, Software as an Evolutionary Entity, Need for Maintenance, Categories of Maintenance: Preventive, Adaptive, Corrective and Perfective Maintenance, Cost of Maintenance, Software Reengineering, Reverse Engineering. Software Configuration Management Activities, Change Control Process, Software Version Control, An Overview of CASE Tools, Risk management: Reactive vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM plan.	8
Total Hours		40

Course Outcomes:

- **CO-1**: Interpret and justify different software development life cycle models.
- CO-2: Understand the requirement analysis and identify state & behavior of real world software projects.
- **CO-3**: Use various design methodologies to derive solutions for software project.
- **CO-4**: Evaluate and quantify the quality of software though evaluation metrics.
- **CO-5**: Identify and analyse the risk in development. CO-5: Evaluate different testing methods for software project management.

Text Books:-

- 1. Roger S. Pressman, "Soflware Engineering A Practitioner's Approach", Seventh Edition, McGraw-Hill International Edition, 2010.
- 2. Rajib Mall, "Fundamentals of Software Engineering", Third Edition, PHI Learning Private Limited, 2009.

Reference Books:-

- 1. Elis Awad, "System Analysis & Design", Galgotia publications.
- 2. PankajJalote "Software Engg" Narosa Publications.
- 3. Ian Sommerville: Software Engineering 6/e (Addison-Wesley).
- 4. Richard Fairley: Software Engineering Concepts (TMH).
- 5. Hans Vans Vilet, "Software Engineering Principles and Practice", Wiley.
- 6. SrinivasanDesikan and Gopalaswamy: Software Testing, Principle.

List/Links of e-learning resource

https://onlinecourses.nptel.ac.in/noc23_cs122/preview

Modes of Evaluation and Rubric

The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end semester theory and practical examination.

CO-PO Mapping:

COs	PO_1	PO_2	PO_3	PO_4	PO_5	PO_6	PO ₇	PO ₈	PO ₉	PO_1	PO ₁₁	PO_{12}	PSO1	PSO2
CO-1	3	3	1	1								2	3	1
CO-2	3	2	3	2								3	2	
CO-3	3	2	1	3	2							2	2	2
CO-4	2	3	2	2			3						2	2
CO-5	2	2	1									3	1	2

Suggestive list of design methodology tools:-

- 1. Develop requirements specification for a given problem (The requirements specification should include both functional and non-functional requirements. For a set of about 10 sample problems.
- 2. Develop DFD Model (Level 0, Level 1 DFD and data dictionary) of the sample problem.
- 3. Develop UML Use case model for a sample problem.
- 4. Develop Sequence Diagrams.
- 5. Develop Class diagrams.
- 6. Use testing tool such as junit
- 7. To compute cyclometic complexity for any flow graph.
- 8. Using configuration management tool-libra.
- 9. Use CPM/PERT for scheduling the assigned project.
- 10. Use Gantt Charts to track progress of the assigned project.

Recommendation by Board of studies on	
Approval by Academic council on	
Compiled and designed by	
Subject handled by department	Department of CSE

(Engineering College), VIDISHA M.P.
Autonomous Institute Affiliated to RGPV Bhor

(An Autonomous Institute Affiliated to RGPV Bhopal) DEPARTMENT OF CSE

Semester/Ye	ear	IV/II		Pro	gram		B.Tech – CSE(Blockchain)					
Subject Category	DL	Subject Code:	ВС	BC-406		bject ame	Advanc	anced Java Programming				
		Maximum	Marks A	llotted	l			Cont	oot II		Total	
	T	heory			Praction	cal	Total	Com	act H	ours	Credits	
ES	MS	Assignment	Quiz	ES	LW	Quiz	Marks	L	T	P		
-	-	-		60	20	20	100	0	0	4	2	

Prerequisites:

Concepts of object oriented programming and core java.

Course Objective:

- To introduce and understand students to programming concepts and techniques using the Java language and programming environment, class and objects.
- To learn about lifetime, scope and the initialization mechanism of variables and improve the ability general problem solving abilities in programming.

• Be able to use the Java SDK environment to create, debug and run simple Java program

UNITs	Descriptions	Hrs.
I	Basic Java Features - C++ Vs JAVA, JAVA virtual machine, Exception Handling, File and Streams, Visibility, Constructors, Operator and Methods Overloading, Static Members, Inheritance: Polymorphism, Abstract methods and Classes.	8
II	Java Collective FrameWork - Generics: Introduction, Overloading Generic Methods, Generic Classes, Collections: Interface Collection and Class Collections, Lists, Array List and Iterator, Linked List, Vector. Collections Algorithms: sort, shuffle, reverse, fill, copy, max and min ,binary Search, Stack Class of Package java. Util, Class Priority Queue and Interface Queue, Maps, Properties Class, Unmodifiable Collections.	8
III	Advance Java Features - Multithreading: Multithreading with GUI, Monitors and Monitor Locks. Networking: Manipulating URLs, Reading a file on a Web Server, Socket programming, Security and the Network, RMI, Networking, Accessing Databases with JDBC.	8
IV	Advance Java Technologies - Servlets: Overview and Architecture, Handling HTTP & HTTPS, get Requests, Using JDBC from a Servlet, Java Server Pages (JSP): First JSP Example, JSP elements, JSP tag library, Session tracking, Java Cryptographic Architecture(JCA).	8
V	Advance Web/Internet Programming (Overview): Struts- Basics of MVC, architecture, action class, interceptors, tag library, validations, Hibernate- basics, architecture, CRUD, Spring- framework introduction.	8
Total Hours		40

Course Outcomes:

CO1: Use the syntax and semantics of java programming language and basic concepts of OOP.

CO2: Write basic Java applications and use arrays.

CO3: Develop reusable programs using the concepts of RMI and JDBC.

CO4: Apply the concepts of Servlet and JSP using advanced tools.

CO5: Design event driven GUI and web related applications which mimic the real word scenarios.

Text Book:-

- 1. E. Balaguruswamy, "Programming In Java"; TMH Publications
- 2. The Complete Reference: Herbert Schildt, TMH

Reference Books-

- 3. Deitel&Deitel, "JAVA, How to Program"; PHI, Pearson
- 4. Cay Horstmann, Big JAVA, Wiley India
- 5. Merlin Hughes, et al; Java Network Programming, Manning Publications/Prentice Hall

List/Links of e-learning resource

• https://archive.nptel.ac.in/courses/106/105/106105191/

Modes of Evaluation and Rubric

The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end semester practical examination.

CO-PO Mapping:

COs	PO_1	PO ₂	PO ₃	PO ₄	PO ₅	PO_6	PO ₇	PO ₈	PO ₉	PO_1	PO ₁₁	PO_{12}	PSO1	PSO2
CO-1	2	2	2										1	2
CO-2	2	2	2										1	2
CO-3	2	1	2	1									1	2
CO-4	2	1	2	1										2
CO-5	2	2	1	1									1	2

Suggestive list of experiments:

- 1. Installation of JDK.
- 2. Write a program to show Scope of Variables
- 3. Write a program to show Concept of CLASS in JAVA
- 4. Write a program to show Type Casting in JAVA
- 5. Write a program to show How Exception Handling is in JAVA
- 6. Write a Program to show Inheritance
- 7. Write a program to show Polymorphism
- 8. Write a program to show Access Specifiers (Public, Private, Protected) in JAVA
- 9. Write a program to show use and Advantages of CONSTRUCTOR
- 10. Write a program to show Interfacing between two classes
- 11. Write a program to Add a Class to a Package
- 12. Write a program to show Life Cycle of a Thread
- 13. Write a program to demonstrate AWT.
- 14. Write a program to Hide a Class
- 15. Write a Program to show Data Base Connectivity Using JAVA
- 16. Write a Program to show "HELLO JAVA" in Explorer using Applet
- 17. Write a Program to show Connectivity using JDBC
- 18. Write a program to demonstrate multithreading using Java.
- 19. Write a program to demonstrate applet life cycle.
- 20. Write a program to demonstrate concept of servlet.

Recommendation by Board of studies on	
Approval by Academic council on	
Compiled and designed by	
Subject handled by department	Department of CSE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal) DEPARTMENT OF CSE

Semester/Yea	r	IV/II		P	rogram		B.Teo	ch – C	SE(B	lockc	hain)
Subject Category	OE	Subject Code	E-405(A)	Subj	ect Name	Foundation of Data Science					
		Maximu	ks Allotted	ĺ			C	ontac	et	Total	
	Tł	neory			Practic	al	Total	ŀ	Hours	5	Credits
ES	MS	Assignment	Quiz	iz ES LW		Quiz	Marks	L	T	P	
60	20	10) 10		_	-	100	3	0	0	3

Prerequisites:

Basic Knowledge of mathematics.

Course Objective:

- To provide the knowledge and expertise to become a proficient data scientist;
- Demonstrate an understanding of statistics and machine learning concepts that are vital for data science;
- Produce Python code to statistically analyze a dataset;
- Critically evaluate data visualizations based on their design and use for communicating stories from data;

UNITs	Descriptions	Hrs.
I	Data Science-What is Data Science, Need for Data Science, Difference between Data Science & Business Intelligence, Data Science Components, Tools for Data Science, Data Science Life cycle, Applications of Data Science, Data Science Ethics. Representation of Data- Types of data, primary, secondary, quantitative and qualitative data. Types of Measurements, nominal, ordinal, discrete and continuous data.	7
II	Presentation of data by tables, construction of frequency distributions for discrete and continuous data. Graphical representation of a frequency distribution by histogram and frequency polygon, cumulative frequency distributions. Data Preprocessing- Knowing Data, Data Cleaning, Data Integration, Data Selection, Data Transformation	7
III	Descriptive Statistics-Arithmetic mean, Median, Mode, Geometric mean, Harmonic mean. Partition values: Quartiles, Deciles and percentiles. Measures of dispersion: Mean deviation, Quartile deviation, Standard deviation, Coefficient of variation. Moments: measures of skewness, Kurtosis	7
IV	Correlation-Scatter plot, Karl Pearson coefficient of correlation, Spearman's rank correlation coefficient, multiple and partial correlations. Regression: Concept of errors, Principles of Least Square, Simple linear regression and its properties. Types of Regressions.	7
V	Basics of Big Data, Problem handling large data, general techniques for handling large data, Basic concept of Machine Learning, training model, validating model, supervised & unsupervised learning.	7
Total Hours		35

Course Outcomes

CO1: To explain how data is collected, managed and stored for data science.

CO2: To understand the key concepts in data science, including their real-world applications and the toolkit used by data scientists.

CO3: To implement data collection and management scripts using Mongo DB.

CO4: Examine the techniques of Data Visualization.

CO5: Identification of various applications of Data Science.

Text Books

- 1. "Introducing Data Science" by Davy Cielen, Arno D. B. Meysman, Mohamed Ali, 1st Edition, Manning Publications Co.
- 2. "An Introduction to Probability and Statistics" by Rohatgi V.K and Saleh E, 3rd

Edition, John Wiley & Sons Inc., New Jersey,

3. "Data Mining Concept & Techniques" by Han & Kember, 3rd Edition, The Morgan Kaufmann,

Reference Books

- 1. Joel Grus, Data Science from Scratch, Shroff Publisher/O'Reilly Publisher Media
- 2. Annalyn Ng, Kenneth Soo, Numsense Data Science for the Layman, Shroff Publisher Publisher
- 3. Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk from The Frontline. O'Reilly Publisher.

List/Links of e-learning resource

• https://nptel.ac.in/courses/106106179

Modes of Evaluation and Rubric

The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end semester practical examination.

CO-PO Mapping:

COs	PO_1	PO ₂	PO ₃	PO_4	PO ₅	PO_6	PO ₇	PO ₈	PO ₉	PO_1	PO ₁₁	PO ₁₂	PSO1	PSO2
CO-1	1	3		2									1	2
CO-2	2	2											2	2
CO-3	2	1	3										1	2
CO-4	1	2											3	1
CO-5	3	3		2									2	3

Recommendation by Board of studies on	
Approval by Academic council on	
Compiled and designed by	
Subject handled by department	Department of CSE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal) DEPARTMENT OF CSE

Semester/Ye		P	rogran	n	B.T	B.Tech - CSE(Blockchain)					
Subject Category	OE	Subject Code:	OE-	-405 (B	5)	Subject Name		Micro			
		Contact House Tota									
Theory					Praction	cal	Total	Contact Hours			Credits
ES	MS	Assignment	Quiz	ES	LW	Quiz	Marks	L	T	P	
60	20	10	10	-	-	-	100	3	0	0	3

Prerequisites:

Digital electronics

Course Objective:

- The objective of this course is to become familiar with the architecture and the instruction set of an Intel microprocessor.
- Assembly language programming will be studied as well as the design of various types of digital and analog interfaces.
- To introduce 8051 microcontrollers.

UNITs	Descriptions	Hrs.
I	Introduction: Evolution of microprocessor, architecture, instruction, Instruction sets, Arithmetic and Logic Instruction, Program control instruction, addressing modes, physical memory organization, general bus operation, I/O addressing capability, machine language, assembly language, high level language, programming microprocessor, program execution process.	7
II	8086 architecture: ALU, Timing and control Unit, Registers, data and Address bus, instructions format, addressing modes, stack structure, interrupts, and interrupts service routines; interrupt cycle, maskable and non maskable interrupts, maximum mode, minimum mode, timing and delays.	7
III	8086 Programming: Machine level program, machine coding of the program, instructions set, Assembly language programming, assembler directives operators.	7
IV	Peripherals and interfacing: memory interfacing, I/O ports, I/O ports interfacing, I/O ports Addressing, PIO 8255, 8253 interval timer, 8259A Programmable Interrupt Controller,	7
V	8257 DMA Controller, DMA transfers and operations, memory unit, different semiconductor technologies for memory, cache memory, addressing of the memory, addressing capacity of the CPU.80286/80386/80486/Pentium: salient features Microcontroller 8051, architecture, register set, Instruction set, Interrupts of 8051, Intel's Family of 8-bit and 16-bit microcontroller.	7
Total Hours		35

Course Outcomes:

- **CO-1:** Describe architecture and instructions, Differentiate among different programming language; define various addressing modes and memory organization.
- **CO-2:** Justify the different part (control unit, registers, and address bus) of microprocessors. Write and use different instructions. Understand the importance of interrupt service routine.
- **CO-3:** Write and use assembly level codes to solve problems
- **CO-4:** Identify the need of interfacing units and describe various interfacing chips.
- **CO-5**: Differentiate between microprocessor and microcontroller and Understand the advance features of advance microprocessors (8020, 286).

Text Book:-

- 1. A.K.Ray K. M. Bhurchandi, "Advanced Microprocessor and peripherals" TMH
- 2. Douglas V Hall, "Microprocessors and interfacing Programming & Hardware" TMH

Reference Books-

- 1. Barry B. Brey, "The intel Microprocessor 8086", Pearson Education
- 2. Kenneth J.Ayala, "The 8086 Microprocessor: Programming & Interfacing The PC", Cengage Learning
- 3. Krishna Kant, "Microprocessors and Microcontrollers", PHI Learning
- 4. R.S. Gaonkar, "Microprocessors and interfacing", TMH

List/Links of e-learning resource

• https://archive.nptel.ac.in/courses/108/103/108103157/

Modes of Evaluation and Rubric

The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end semester theory examination.

CO-PO Mapping:

COs	PO_1	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO_1	PO ₁₁	PO ₁₂	PSO1	PSO2
CO-1	2	2	2	1									1	2
CO-2	2	2	2	1									1	2
CO-3	2	2	2	1									2	2
CO-4	2	2	2	1									2	2
CO-5	2	1	1	1									2	2

Recommendation by Board of studies on						
Approval by Academic council on						
Compiled and designed by						
Subject handled by department	Department of	f CSE	•	•	•	•

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Bachelor of Technology B.Tech in CSE (Blockchain Technology)

Semester/Ye	Prog	ram			B. Tech – CSE(Blockchain)							
Subject Category	OE	Subject Code:	OE-4	105(C)		bject ame	Foundation of Block chain Technology					
Maximum Marks Allotted												
Theory					Praction	cal	Total	Contact Hours			Credits	
ES	MS	Assignment	Quiz	ES	LW	Quiz	Marks	L	T	P		
60	20	10	10	-	-	-	100	3	0	0	3	

Prerequisites:

Basic Knowledge of mathematics.

Course Objective:

- Technology behind blockchain
- Emerging trends in blockchain.
- Real-world applications of block chain

UNITs	Descriptions	Hrs.
	Introduction to Blockchain Technology: Basic ideas behind block chain, how it is changing the	
I	landscape of digitalization, introduction to cryptographic concepts, Hashing, public key	7
	cryptosystems, private vs public block chain and use cases, Hash Puzzles	
	Blockchain Fundamentals: Basic architecture of Blockchain, different terminologies	
II	associated, Characteristics of Block chain, Types of networks, Introducing Smart contract	7
	concept in Blockchain.	
III	Components of Blockchain: Core components of Blockchain, Types of Block chains;	7
111	Blockchain Protocol, Permission & Permission less Block chains,	,
	Digital Ledger: Short History of Money and Trust, Bitcoin Mechanics, Introduction to	
	Ethereum, Introduction to Hyperledger, Hyperledger Fabric and its architecture, Hyperledger	
IV	Composer	7
	Emerging Trends in Blockchain: Cloud-based block chain, Multi chain, Geth, Stellar, Ripple,	
	R3 Corda, Blockchain API, Blockchain Sandboxes	
	Block Chain Use Cases: Supply Chain Management, Finance, Health Care, Internet of Things	
V	(IoT), Remittance, Land Records, Voting and election, Loyalty Programs, Go Green	7
	(Renewable Energy)	
Total Ho	urs	35

Course Outcomes:

- CO-1: Understand the basic concepts, principles and applications of block chain.
- CO-2: Understand basic architecture of Block chain, Characteristics of Block chain.
- CO-3: Explain Core components of Block chain, Types of Block chains; Blockchain Protocol.
- CO-4: Compare the working of different block chain platforms.
- CO-5: Analyse the importance of block chain in finding the solution to the real-world problems.

Text Book & Reference Books-

- 3. Artemis Caro, "Blockchain: The Beginners Guide to Understanding the Technology BehindBitcoin& Crypto currency".
- 4. Scott Marks, "Blockchain for Beginners: Guide to Understanding the Foundation and Basics of the Revolutionary Blockchain Technology", Create Space Independent Publishing Platform.
- 5. Mark Watney, "Blockchain for Beginners".
- 6. Alwyn Bishop, "Blockchain Technology Explained".

List/Links of e-learning resource

• https://archive.nptel.ac.in/courses/106/104/106104220/

Modes of Evaluation and Rubric

The evaluation modes consist of performance in two mid semester Tests, Quiz/Assignments, term work, end semester theory examination.

CO-PO	CO-PO Mapping:														
COs	PO_1	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO_1	PO ₁₁	PO ₁₂	PSO1	PSO2	
CO-1	3	1											3	3	
CO-2	3	1											1	3	
CO-3	3	2											2	1	
CO-4	3	3	2											3	
CO-5	3	3	2										3		
Suggestiv	ve list o	of exper	iments	:											
Recomm	endatio	n by Bo	ard of s	studies o	on										
Approval	Approval by Academic council on														
Compiled	d and de	esigned	by	•		•	•								
Subject h	andled	by depa	artment	•		•	•	Department of CSE							